

A critical assessment of generative Al for inorganic materials discovery Nathan Szymanski & Chris Bartel

bartel.cems.umn.edu

Chemical Engineering & Materials Science

UNIVERSITY OF MINNESOTA

IPRIME Annual Meeting | May 28, 2025 | 4D Program Review

Generative AI for text and images has become mainstream

Can AI generate *materials* with desired functionality?

Many generative models are being developed for materials

A gap remains between proposed and synthesized materials

Chemical Engineering

How can we quantify the likelihood of synthesizability?

 ΔE_d is the **decomposition energy**, which we can get from density functional theory (DFT) calculations

Bartel, Journal of Materials Science, 2022

Materials with low ΔE_d are more likely to be synthesizable

When designing new materials, they should either:

- Be stable ($\Delta E_{d} \leq 0$)
- Have a small ΔE_d

Figure adapted from Sun et al., Sci. Adv. (2016)

A framework to assess generative AI models using ΔE_d

pre-print: Szymanski & Bartel, arXiv:2501.02144 **code:** github.com/Bartel-Group/matgen_baselines

7

A framework to assess generative AI models using ΔE_d

pre-print: Szymanski & Bartel, arXiv:2501.02144 | code: github.com/Bartel-Group/matgen_baselines

8

We assessed three types of generative models

CrystaLLM: language model

_symmetry_space_group_name_H-M_Pm-3m _cell_angle_alpha 90.0000000 _cell_angle_beta 90.0000000 _cell_angle_gamma 90.00000000 chemical formula structural BaTiO3 chemical formula sum 'Ba1 Ti1 O3' cell volume 100.48917348 _symmetry_equiv_pos_site_id

1 'x, y, z' 2 '-x, -y, -z' 3 '-y, x, z' 4 'y, -x, -z' 5 '-x, -y, z' 6 'x, y, -z' 7 'y, -x, z' 8 '-y, x, -z' _atom_type_symbol _atom_type_oxidation_number Ti4+4.0 _atom_site_type_symbol atom site label _atom_site_symmetry_multiplicity atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ti4+Ti1 1 0.5000000 0.5000000 0.5000000

We assessed three types of generative models

CrystaLLM: language model

1 'x, y, z'

generated using pymatgen _symmetry_space_group_name_H-M_Pm-3m _cell_length_a 4.64914500 _cell_length_b 4.64914500 _cell_length_c 4.64914500 _cell_angle_alpha 90.0000000 _cell_angle_beta 90.0000000 _cell_angle_gamma 90.0000000 chemical formula structural BaTiO3 cell volume 100.48917348 cell_formula_units_Z_1 _symmetry_equiv_pos_site_id

2 '-x, -y, -z' 3 '-y, x, z' 4 'y, -x, -z' 5 '-x, -y, z' 6 'x, y, -z' 7 'y, -x, z' 8 '-y, x, -z' _atom_type_symbol _atom_type_oxidation_number Ti4+4.0 _atom_site_type_symbol atom site label _atom_site_symmetry_multiplicity atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ti4+ Ti1 1 0.5000000 0.5000000 0.5000000

We assessed three types of generative models

CrystaLLM: language model

generated using pymatgen data_BaTiO3 _symmetry_space_group_name_H-M Pm-3m _cell_length_a 4.64914500 _cell_length_b 4.64914500 _cell_length_c 4.64914500 _cell_angle_alpha 90.00000000 _cell_angle_beta 90.00000000 _cell_angle_gamma 90.00000000 symmetry Int Tables number 221 chemical formula structural BaTiO3 _chemical_formula_sum 'Ba1 Ti1 O3' _cell_volume 100.48917348 _cell_formula_units_Z 1 loop_ _symmetry_equiv_pos_site_id

1 'x, y, z' 2 '-x, -y, -z' 3 '-y, x, z' 4 'y, -x, -z' 5 '-x, -y, z' 6 'x, y, -z' 7 'y, -x, z' 8 '-y, x, -z' loop_ _atom_type_symbol _atom_type_oxidation_number Ti4+ 4.0 02--2.0 loop _atom_site_type_symbol _atom_site_label _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy Ti4+ Ti0 1 0.0000000 0.0000000 0.0000000 1 Ti4+ Ti1 1 0.5000000 0.5000000 0.5000000 1 O2- Ti2 3 0.0000000 0.0000000 0.50000000 1

10 pre-print: Szymanski & Bartel, arXiv:2501.02144 | **code:** github.com/Bartel-Group/matgen_baselines

Is this good? Better than traditional approaches?

We need baselines!

Even the best method has a stability rate of only 26.8%

pre-print: Szymanski & Bartel, arXiv:2501.02144 [code: github.com/Bartel-Group/matgen_baselines]

12

Results show that baseline methods perform comparably well

Results show that baseline methods perform comparably well

pre-print: Szymanski & Bartel, arXiv:2501.02144 | **code:** github.com/Bartel-Group/matgen_baselines

In terms of stability, generative models don't have a clear advantage over more traditional methods...

What about **novelty**?

Assessing novelty by comparing with open databases

Definition 1: Novel materials \rightarrow being outside of the training data

MATERIALS
PROJECTA material is "novel" if it does not match any
of the known 200k materials in MP

pre-print: Szymanski & Bartel, arXiv:2501.02144 **code:** github.com/Bartel-Group/matgen_baselines

16

Assessing novelty by comparing with open databases

Definition 1: Novel materials \rightarrow being outside of the training data

MATERIALS
PROJECTA material is "novel" if it does not match any
of the known 200k materials in MP

Ion exchange produces the most new materials that are stable ...**Outperforming Al!**

Assessing novelty by comparing with open databases

Definition 2: *Prototype novelty* \rightarrow an entirely new crystal structure

A material is "prototype-novel" if its structure cannot be mapped to a known prototype in AFLOW

Beyond stability and novelty: what about functionality?

We evaluated two properties: band gap and bulk modulus

& Materials Science

We evaluated two properties: band gap and bulk modulus

Results show that generative AI excels on (some) properties

68.8% of materials proposed by the **best generative model (FTCP)** exhibit a band gap within 0.5 eV of the target

68.8% of materials proposed by the **best generative model (FTCP)** exhibit a band gap within 0.5 eV of the target

Random sampling is much worse: only 7.8% of materials satisfy the same constraint

68.8% of materials proposed by the **best generative model (FTCP)** exhibit a band gap within 0.5 eV of the target

Random sampling is much worse: only 7.8% of materials satisfy the same constraint

Ion exchange works okay (36.4%) but is not nearly as effective as the generative AI (FTCP)

code: github.com/Bartel-Group/matgen_baselines

Results show that generative AI excels on (some) properties

Only 13.4% of materials proposed by the **best generative model (FTCP)** exhibit a bulk modulus > 300 GPa

Only 13.4% of materials proposed by the **best generative model (FTCP)** exhibit a bulk modulus > 300 GPa

Random sampling and ion exchange both perform even worse...

Extreme properties are difficult due to a lack of relevant data

< 1% materials
with B > 300 GPa

Balancing stability, novelty, and targeted properties

Graph neural networks are fast and (usually) reliable

Crystal structure

Energy, properties

Some mean absolute errors:

- Energy: 18 meV/atom
- Band gap: 0.38 eV
- Bulk modulus: 24 GPa

ML filtering leads to improved stability rates for all methods

ML filtering also improves property targeting

For comparison: these two methods were applied *without* any ML filtering

Using ML to filter by predicted bulk modulus now exceeds the performance of generative AI

A summary of key takeaways

- Template-based methods can be used to generate stable materials
- If structural novelty is your priority, generative AI is the way to go
- Generative AI can provide targeted properties, but so can direct ML

We can leverage both!

