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Generative Al for text and images has become mainstream CEMS
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Can Al generate materials with desired functionality? CEMS

Chemical Engineering
& Materials Science

Structure and composition
A Quantum chemistry Predicted

calculations functionality

Generative Al may help us solve the inverse problem

Given a desired functionality:
propose hypothetical materials




Many generative models are being developed for materials CEMS
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A gap remains between proposed and synthesized materials
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How can we quantify the likelihood of synthesizability? CEMS
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Example:
Mn,O; = MnO + MnO,

o=>C

Metastable A O

Ey Ground state

AE, is the decomposition energy, which we can get
from density functional theory (DFT) calculations %

Bartel, Journal of Materials Science, 2022




Materials with low AE; are more likely to be synthesizable CEMS
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When desighing new materials,
they should either:

Phase Sep.
F robmorohs S * Be stable (AE4 < 0)

« Have a small AE,

Binaries

Ternaries

6.9

Quaternaries :
3.4

0 20 40 60 80 100 120
Decomposition energy (meV/atom)

Figure adapted from Sun et al,, Sci. Adv. (2016)



A framework to assess generative Al models using AE, CEMS

Materials generation

DFT energy calculations
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A bad model will
produce a distribution
like this
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A framework to assess generative Al models using AE, CEMS
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We assessed three types of generative models CEMS
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Chemical Engineering

We assessed three types of generative models
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We assessed three types of generative models CEMS
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Results show varied performance among distinct models CEMS
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Results show varied performance among distinct models CEMS
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Results show varied performance among distinct models CEMS
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Is this good? Better than

traditional approaches? 0
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Template-based methods are used as baselines
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New materials are often designed through analogy to known materials
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Results show that baseline methods perform comparably well CEMS
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Results show that baseline methods perform comparably well CEMS
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Results show that baseline methods perform comparably well CEMS
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Random more traditional
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Assessing novelty by comparing with open databases CEMS
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Definition 1: Novel materials - being outside of the training data

7
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Assessing novelty by comparing with open databases QmEMSg
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Definition 1: Novel materials - being outside of the training data

MATE RIALS A material is "novel” if it does not match any
PROJEC of the known 200k materials in MP

Stable and novel

100
s 80 lon exchange produces
260 the most new materials
o
~ 40 that are stable
C [ ]
A 201 ey A% 48%  5.6% ..Outperforming Al!
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Assessing novelty by comparing with open databases CEMS
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Definition 2: Prototype novelty - an entirely new crystal structure

l o l A material is “prototype-novel” if its structure cannot
' be mapped to a known prototype in AFLOW
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Beyond stability and novelty: what about functionality? CEMS
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Generative models can be
conditioned on certain
properties

|

Regions of latent space with
optimal property values

19 pre-print: Szymanski & Bartel, arXiv:2501.02144 | code: github.com/Bartel-Group/matgen_baselines AN



We evaluated two properties: band gap and bulk modulus CEMS
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Target #1: band gap of 3 eV

E A

Conduction band

20 pre-print: Szymanski & Bartel, arXiv:2501.02144 | code: github.com/Bartel-Group/matgen_baselines AN



We evaluated two properties: band gap and bulk modulus CEMS
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Target #2: bulk modulus > 300 GPa

Large bulk

-~ modulus
means highly
resistant to
compression

O
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Results show that generative Al excels on (some) properties CEMS
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Results show that generative Al excels on (some) properties CEMS
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Results show that generative Al excels on (some) properties CEMS
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Results show that generative Al excels on (some) properties CEMS
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Results show that generative Al excels on (some) properties CEMS

Fraction of structures

22

0.30

0.151

0.00
0.30

0.15+

0.00

0.30

0.151

0.00

FTCP 13.4%
— 1 ] 4___,___
0 100 200 300 400 500
Random |  4.2%
_I_I_! ? : —
0 100 200 300 400 500
lon 9.2%
exch. .
0 100 200 300 400 500

Bulk Modulus (GPa)

Chemical Engineering
& Materials Science

Random sampling and ion exchange
both perform even worse...

Extreme properties are difficult due
to a lack of relevant data

Oﬁ QD MATERIALS < 1% materials
o " with B > 300 GPa
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Balancing stability, novelty, and targeted properties CEMS
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Can we achieve a balance through ML-based filtration? CEMS
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Materials generation DFT calculations
. ~ | can take hours-to-days
— for each material —
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Graph neural networks are fast and (usually) reliable CEMS
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ML filtering leads to improved stability rates for all methods CEMS

With ML filtering
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Stability rates
NOwW as NoOw as
high as 48%

SNN rates as
high as 28%

But novel
prototypes
remain
unstable
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ML filtering also improves property targeting CEMS
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A summary of key takeaways CEMS
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« Template-based methods can be used to generate stable materials
* If structural novelty is your priority, generative Al is the way to go

* Generative Al can provide targeted properties, but so can direct ML

1 ]

We can leverage both!
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