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Generative AI for text and images has become mainstream

Midjourney
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Can AI generate materials with desired functionality?

Predicted 

functionality

Structure and composition
Quantum chemistry 

calculations

Generative AI may help us solve the inverse problem

Given a desired functionality: 

propose hypothetical materials
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Many generative models are being developed for materials

These are 

papers with 

generative 

and materials 

in their titles
1st generative AI 

for materials

ChatGPT 

release
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A gap remains between proposed and synthesized materials

485 

papers

1 exp. 

validated
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How can we quantify the likelihood of synthesizability?

Example:
Mn2O3 → MnO + MnO2

TiO2

∆𝑬𝐝 is the decomposition energy, which we can get 

from density functional theory (DFT) calculations

Bartel, Journal of Materials Science, 2022
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Materials with low ∆𝑬𝐝 are more likely to be synthesizable

Decomposition energy (meV/atom)
Figure adapted from Sun et al., Sci. Adv. (2016)

When designing new materials, 
they should either:

• Be stable (∆𝑬𝐝 ≤ 𝟎)

• Have a small ∆𝑬𝐝
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MatGen-Baselines

Comparison to MPMaterials generation DFT energy calculations

~200k compounds

A good model will 

produce a distribution 

like this

A bad model will 

produce a distribution 

like this

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines

A framework to assess generative AI models using ∆𝑬𝐝
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A framework to assess generative AI models using ∆𝑬𝐝

A good model will 

produce a distribution 

like this

A bad model will 

produce a distribution 

like this

Good

Bad

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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CDVAE: diffusion model

Noising

Denoising

CrystaLLM: language model

FTCP: autoencoder
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We assessed three types of generative models
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Results show varied performance among distinct models

Results based on 500 materials 

generated from each method

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show varied performance among distinct models

Even the best method has a 

stability rate of only 26.8%

Is this good? Better than 

traditional approaches?

We need baselines!

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Template-based methods are used as baselines

New materials are often designed through analogy to known materials

EX: Li7La3Ti2O12 (LLTO) → Li7La3Zr2O12 (LLZO) 

Known structures New compositions

Random selection

Ensure charge balance

e.g., 𝑨+𝑩𝟑+𝑶𝟑
𝟐−

Choose known materials that are stable

Then perform data-driven ion exchange

e.g., Li+ for Na+

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show that baseline methods perform comparably well

Stability rate of 4.3%

Stability rate of 19.1%

Results based on 500 materials 

generated from each method

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show that baseline methods perform comparably well

6.3%

26.8%

1.4%

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show that baseline methods perform comparably well

In terms of stability, 

generative models 

don’t have a clear 

advantage over 

more traditional 

methods…

Known?

What about novelty?

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Assessing novelty by comparing with open databases

Definition 1: Novel materials → being outside of the training data

A material is “novel” if it does not match any 
of the known 200k materials in MP

Notice the tradeoff between 

stability and novelty!

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Assessing novelty by comparing with open databases

Definition 1: Novel materials → being outside of the training data

A material is “novel” if it does not match any 
of the known 200k materials in MP

Ion exchange produces 

the most new materials 

that are stable

…Outperforming AI!

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines



18

Assessing novelty by comparing with open databases

Definition 2: Prototype novelty → an entirely new crystal structure

A material is “prototype-novel” if its structure cannot 
be mapped to a known prototype in AFLOW

No method discovered 

a new prototype that 

is also stable

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Beyond stability and novelty: what about functionality?

Generative models can be 
conditioned on certain 

properties

Regions of latent space with 

optimal property values

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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We evaluated two properties: band gap and bulk modulus

𝑬

𝒌

Conduction band

Valence band

Band gap

Target #1: band gap of 3 eV

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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We evaluated two properties: band gap and bulk modulus

𝑬

𝒌

Conduction band

Valence band

Band gap

Target #1: band gap of 3 eV Target #2: bulk modulus > 300 GPa

𝑬

𝑽

Large bulk 

modulus 

means highly 

resistant to 

compression

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show that generative AI excels on (some) properties

68.8% of materials proposed by the 

best generative model (FTCP) exhibit 

a band gap within 0.5 eV of the target

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show that generative AI excels on (some) properties

68.8% of materials proposed by the 

best generative model (FTCP) exhibit 

a band gap within 0.5 eV of the target

Random sampling is much worse:

only 7.8% of materials satisfy the 

same constraint

Ion exchange works okay (36.4%) 

but is not nearly as effective as the 

generative AI (FTCP)

Desired 

band gap

Exchange

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show that generative AI excels on (some) properties

Only 13.4% of materials proposed by 

the best generative model (FTCP) 

exhibit a bulk modulus > 300 GPa

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Results show that generative AI excels on (some) properties

Only 13.4% of materials proposed by 

the best generative model (FTCP) 

exhibit a bulk modulus > 300 GPa

Random sampling and ion exchange 

both perform even worse…

Extreme properties are difficult due 

to a lack of relevant data

< 1% materials 

with 𝐵 > 300 GPa

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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Balancing stability, novelty, and targeted properties

Thermodynamic stability Structural novelty

Properties to 

achieve desired 

functionality
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Can we achieve a balance through ML-based filtration?

Materials generation DFT calculations

Can take hours-to-days 

for each material

ML predictions

Once trained, models 

make predictions in a 

matter of seconds
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Graph neural networks are fast and (usually) reliable

Crystal 

structure

Energy, 

properties

CGCNN
Some mean absolute errors:

• Energy: 18 meV/atom

• Band gap: 0.38 eV

• Bulk modulus: 24 GPa
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ML filtering leads to improved stability rates for all methods

With ML filtering
Stability rates 

now as now as 

high as 48%

S∩N rates as 

high as 28%

But novel 

prototypes 

remain 

unstable

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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ML filtering also improves property targeting

Random + ML Using ML to filter by predicted 

bulk modulus now exceeds the 

performance of generative AI

For comparison: these two 

methods were applied without 

any ML filtering

pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines



A summary of key takeaways

• Template-based methods can be used to generate stable materials

• If structural novelty is your priority, generative AI is the way to go

• Generative AI can provide targeted properties, but so can direct ML

We can leverage both!

28 pre-print: Szymanski & Bartel, arXiv:2501.02144   |   code: github.com/Bartel-Group/matgen_baselines
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