

Leveraging AI and robotics to accelerate inorganic materials synthesis

Nathan J. Szymanski

bartel.cems.umn.edu

Chemical Engineering & Materials Science

University of Minnesota

3M Tech Forum, October 16, 2024

Al and robotics are here...

Chatbots galore

Al and robotics are here...

Chatbots galore

And cute (or creepy) robots

And cute (or creepy) robots

Early examples are promising!

Photocatalysts

Solution synthesis

$2 H_2 O \rightarrow 2 H_2 + O_2$ Water splitting

Early examples are promising!

The mobile chemist handles the vials and does sample transfer

Customized stations handle the finer tasks (weighing, mixing, *etc*.)

Early examples are promising!

Idea Generation

The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Chris Lu^{1,2,*}, **Cong Lu**^{3,4,*}, **Robert Tjarko Lange**^{1,*}, **Jakob Foerster**^{2,†}, **Jeff Clune**^{3,4,5,†} **and David Ha**^{1,†} *Equal Contribution, ¹Sakana AI, ²FLAIR, University of Oxford, ³University of British Columbia, ⁴Vector Institute, ⁵Canada CIFAR AI Chair, [†]Equal Advising

Experiment Iteration

Paper Write-Up

Manuscript

Template

Text Δ via

LLM & aider

Manuscript

LLM Paper

Reviewing

Here, the "experiments" involve writing code, training models, *etc*.

How about for (inorganic) materials science?

Building block

Repeated *many*

times in 3-D to form a crystal

How about for (inorganic) materials science?

Building block

Repeated *many*

times in 3-D to form a crystal

From discovery to commercialization still takes 10-20 years

From discovery to commercialization still takes 10-20 years

From discovery to commercialization still takes 10-20 years

Success stories in materials discovery

Cuprate oxides led to **high-***T*_c **superconductivity**

1990

Sr₂RuO₄

2000

1995

🗖 LaOFeP

2010

2015

2020

2005

UBe₁₃ UPt₃

1985

CeCu₂Si₂

1980

1940

1900

🔶 liq. He

Success stories in materials discovery

Cuprate oxides led to high-T_c superconductivity

Success stories in materials discovery

Discovered in 2007, not yet (successfully) commercialized...

Garnet-type Li₇La₃Zr₂O₁₂ for solid-state electrolytes

Computational materials design has come a long way!

Density functional theory (DFT) can be used to screen for promising materials

Crystal structure

Computational materials design has come a long way!

And more recently... Machine learning Potentials (MLPs) are coming online

Result: more and more **databases of computed materials** are becoming available

155,000 materials

1.22 million materials

3.5 million materials

Computational materials design has come a long way!

Result: more and more databases of computed materials are becoming available

A grad student can synthesize a "handful" of samples each day

Even more time is needed to **characterize** them

A grad student can synthesize a "handful" of samples each day

Even more time is needed to **characterize** them

Computations do not tell us how to make a material

A grad student can synthesize a "handful" of samples each day

Even more time is needed to characterize them

Can automation help alleviate this problem?

Most initial synthesis attempts will fail!

Computations do not tell us how to make a material

There are many approaches to make inorganic materials

High-temperature (solid-state)

Low-temperature (solution-based)

Substrate

Deposition (thin films)

Long been the workhorse for inorganic materials synthesis...but remains stubbornly **difficult to automate in a versatile way**

High-temperature (solid-state)

The basics of solid-state synthesis

Even this "simple" technique has limitations

- Starting precursors often react to give **unwanted byproducts/impurities**
- This can result in **zero target yield**, which is **difficult to optimize!**

Closing the loop for autonomous materials synthesis

Closing the loop for autonomous materials synthesis

The A-Lab: three robotic stations in cooperation

Precursor preparation

Heating station

Characterization

The hardware team

N. J. Szymanski, B. Rendy, Y. Fei, et al., Nature (2023).

The A-Lab: a video demo

Precursor preparation

How to interpret the XRD patterns that A-Lab produces?

19/40

A review of X-ray diffraction (XRD) for crystalline materials

2θ

20/40

A review of X-ray diffraction (XRD) for crystalline materials

These patterns act as **"fingerprints"** for materials.

But how do we know what they'll look like?

Forward problem is easy, but reverse problem is hard

- XRD pattern is **not unique**
- Multi-phase mixtures are common
- Experimental artifacts modify peaks

Forward problem is easy, but reverse problem is hard

- XRD pattern is **not unique**
- Multi-phase mixtures are common
- **Experimental artifacts** modify peaks

These can all be **simulated** and fed to an ML model as training data

Neural networks + physics-informed data augmentation

N. J. Szymanski et al., Chem. Mater (2021).

Tests show that ML outperforms traditional methods

24/40

Tests show that ML outperforms traditional methods

If the experiment failed, what should A-Lab do next?

25/40

Change in Gibbs free energy provides a driving force for each reaction step:

 $\Delta G = \Delta H - T \Delta S$

29/40

Change in Gibbs free energy provides a driving force for each reaction step:

 $\Delta \boldsymbol{G} = \Delta \boldsymbol{H} - \boldsymbol{T} \Delta \boldsymbol{S}$

A "good" reaction pathway has large ΔG at the target-forming step

29/40

Autonomous Reaction Route Optimization With Solid-State Synthesis

N. J. Szymanski^{*}, P. Nevatia^{*}, et al., Nat. Commun. (2023).

ΔG is the **change in the Gibbs free energy** for the precursors to react and form the target

N. J. Szymanski^{*}, P. Nevatia^{*}, et al., Nat. Commun. (2023).

Closing the loop...Does it work?

Initial test case: synthesizing DFT-stable compounds

155,000 materials

We selected **58 compounds** that are stable in air

The Materials Project

		Ex	plore N	lateria	ls	Ac	Advanced Search Syntax											
¹ H	↓ by Elements •						Ja-0					×			search		2 He	
³ Li	⁴ Be												⁶ C	7 N	⁸ 0	⁹ F	10 Ne	
11 Na	12 Mg												¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	⁵³	⁵⁴ Xe	
55 Cs	56 Ba	57-71 La-Lu	72 Hf	⁷³ Ta	⁷⁴	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	⁸² Pb	83 Bi	⁸⁴ Po	85 At	86 Rn	
87 Fr	88 Ra	89-103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	107 Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	111 Rg	112 Cn							
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	¹⁰² No	103 LT		

Ran **3 weeks** of targeted syntheses in the A-Lab

N. J. Szymanski, B. Rendy, Y. Fei, et al., Nature (2023).

Initial test case: synthesizing DFT-stable compounds

71% success per target 41/58 targets

A high success rate per target demonstrates the connection between DFT-calculated stability and synthesizability

A much lower success rate per recipe demonstrates how challenging synthesis can be... even for stable materials!

Initial test case: synthesizing DFT-stable compounds

71% success per target 41/58 targets 130/355 recipes 37% success per recipe

A high success rate per target demonstrates the connection between DFT-calculated stability and synthesizability

A much lower success rate per recipe demonstrates how challenging synthesis can be... even for stable materials!

Again, does it work? Yes, but with limitations...

Characterization remains challenging,

and some of these materials contain impurities that are difficult to identify

Not a good fit!

Again, does it work? Yes, but with limitations...

Human experts to the rescue!

Manual analysis leads to a much better fit

Ag impurities are present... More optimization needed!

36/40

In progress: incorporating additional characterization

In the loop: SEM/EDS

This can give information regarding **composition homogeneity**, but the results are limited in their precision

Out of the loop: ICP-MS

Provides more **precise composition**, but is also more difficult to automate

Many more opportunities for automation exist!

Many more opportunities for automation exist!

There is still quite a **disconnect between academia and industry** here

 \rightarrow Room for collaboration! Educate us on what is important to you \odot

Acknowledgements

UCB, LBNL

UMN

Google

