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But can these tools be useful in science?



Early examples are promising! CEMS
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Early examples are promising! CEMS
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Customized stations
handle the finer tasks
(weighing, mixing, etc.)

The mobile chemist
handles the vials and
does sample transfer
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The AI Scientist: Towards Fully Automated
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How about for (inorganic) materials science? CEMS
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From discovery to commercialization still takes 10-20 years CEMS
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Success stories in materials discovery CEMS
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Cuprate oxides led to high-T_ superconductivity
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Success stories in materials discovery CEMS
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Discovered in 2007,
not yet (successfully)
commercialized...

Garnet-type Li;La;Zr,0,, for solid-state electrolytes
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Computational materials design has come a long way! CEMS
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Density functional theory (DFT) can be used to screen for promising materials

Stability and

Minutes-to-days of computational time Properties

required for each compound

Crystal structure
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And more recently...Machine learning Potentials (MLPs) are coming online

Stability and

Properties
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Result: more and more databases of computed materials are becoming available
c@@ The Materials OQMD
Project

The Open Quantum
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Computational materials design has come a long way! CEMS
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But there are very few examples of
successfully commercialized materials
originating from computations...

Why?



Experimental synthesis and optimization are still bottlenecks CEMS
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Experimental synthesis and optimization are still bottlenecks CEMS
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é"% A grad student can synthesize a “handful” of samples each day

/= Even more time is needed to characterize them

Stage 2

I

Most initial synthesis attempts will fail!

Computations do not tell us how to make a material

]
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Experimental synthesis and optimization are still bottlenecks CEMS
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Can automation help
alleviate this problem?




There are many approaches to make inorganic materials CEMS
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There are many approaches to make inorganic materials CEMS
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Long been the workhorse for inorganic
materials synthesis...but remains stubbornly

a difficult to automate in a versatile way

High-temperature
(solid-state)




The basics of solid-state synthesis CEMS

Target

LiMnTiO,
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™ 800 °C (air)

& 24 hours
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Final
product!

800 °C, 24 hours

]

15/40



Even this “simple” technique has limitations CEMS
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Synthesis recipe

3 ) 50 mg
™ 50 mg Li,CO; Q
Target & 80 mg MnO
¥ 20 mg TiO, ‘
LIMNTIO, | & 800 °C (air) Final
e & 24 hours ) product!

800 °C, 24 hours

~ 8

/ -~ 4

N

» Starting precursors often react to give unwanted byproducts/impurities

 This can result in zero target yield, which is difficult to optimize!
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_g Robotics ﬁ: N. J. Szymanski et al,,
’ ’ . Materials Horizons (2021).
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Closing the loop for autonomous materials synthesis CEMS
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Experimental Execution
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Characterization

Precursor preparation Heating station

The hardware team

N. J. Szymanski, B. Rendy, Y. Fei, et al, Nature (2023).



The A-Lab: a video demo

Precursor

preparation
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How to interpret the XRD patterns that A-Lab produces? CEMS
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Interpretation of Results
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Characterization data
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A review of X-ray diffraction (XRD) for crystalline materials CEMS
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A review of X-ray diffraction (XRD) for crystalline materials CEMS
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These patterns act as
“fingerprints” for materials.

But how do we know what
they’ll look like?
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How to go from XRD to structure?

« XRD pattern is not unique
* Multi-phase mixtures are common

- Experimental artifacts modify peaks

80
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Forward problem is easy, but reverse problem is hard o BB W dws?

& Materials Science
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* XRD pattern is not unique These can all be simulated
* Multi-phase mixtures are common - and fed to an ML model as

- Experimental artifacts modify peaks training data




Neural networks + physics-informed data augmentation

Known structures

chSD

FIZ Karlsruhe

/|

Materials Project ,
Shifts

in 20

N. J. Szymanski et al, Chem. Mater (2021).
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Convolutional neural networks
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Data augmentation
from strain, texture, and
poor crystallinity
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Tests show that ML outperforms traditional methods CEMS
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Tests on both simulated and experimental data
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Tests show that ML outperforms traditional methods CEMS
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Tests on both simulated and experimental data
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If the experiment failed, what should A-Lab do next? w1l
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Some background on synthesis science CEMS
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What happens in between?
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Heating @

Precursors Product




Some background on synthesis science CEMS
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Pairwise reactions




Some background on synthesis science

Pairwise reactions
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Change in Gibbs free energy
provides a driving force for
each reaction step:

AG = AH — TAS




Some background on synthesis science CEMS
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Change in Gibbs free energy
provides a driving force for
each reaction step:

AG = AH — TAS

Pairwise reactions

A A “good” reaction pathway
| — has large AG at the
E target-forming step
) — —
o ve . I
L ' ‘ | Target | AG
LL | &) DFT energetics ——

>

Reaction Progress




Some background on synthesis science CEMS
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How to find the “good”
pathways efficiently?



ARROWS iteratively learns to prioritize max-AG pathways CEMS
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> ARROWS—

Autonomous Reaction Route Optimization
With Solid-State Synthesis

N. J. Szymanski®, P Nevatia’, et al, Nat. Commun. (2023).



ARROWS iteratively learns to prioritize max-AG pathways CEMS
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X X0 MATERIALS (T
é‘t@g PROJEC 4 ) . Precursors |
Prioritize precursor sets i i
DFT-calculated with large AG T AG
energetics N Jo A a rget ___________

AG is the change in the Gibbs free energy for
the precursors to react and form the target

N. J. Szymanski®, P Nevatia’, et al, Nat. Commun. (2023).



ARROWS iteratively learns to prioritize max-AG pathways CEMS
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Prioritize precursor sets | AG |
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Perform experiments
Learn which reactions occurred and using suggested
precursors

re-compute AG to form the target \ )




ARROWS iteratively learns to prioritize max-AG pathways
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Predict reaction
outcomes of new
precursor sets

CEMS

Chemical Engineering
& Materials Science

____________________________________

4 ™ Intermediates
Prioritize precursor sets AG
with large AG Target
N 2 N SR
) 4 : )
Perform experiments
< using suggested
precursors
J - J

— 600 C
— 800C
h —— 1000 C

M‘ »‘WJ “J“M\)l'f\,\,,_fwul'uw’l\‘\ww




ARROWS iteratively learns to prioritize max-AG pathways CEMS
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Avoid forming BEE— ‘:
50 highly stable é R . Intermediates |
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Prioritize precursor sets

that retain large AG | AG
| Target i
Update - J Moot /
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Predict reaction Perform experiments
outcomes of new < using suggested
precursor sets precursors
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Closing the loop...Does it work?
e & NimtorizleSeioncs
€° Robotics & N. J. Szymanski et al,
’ ' Materials Horizons (2021).
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Initial test case: synthesizing DFT-stable compounds CEMS
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_______________________ The Materials Project

\
| Explore Materials Advanced Search Syntax
1 5 5 000 m ater| d IS ' 'p [ | Q byBemems - [Nao ‘He
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Li Be B C N O F Ne
| d d 11 12 13 14 15 16 17 18
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19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
. . K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
th at a re Sta b | e I n a I r 37 38 39 40 41 42 43 44 45 46 47 48 49 51 53

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In SnSbTe I Xe

55 56 72 73 74 75 76 77 78 79 80 81
CsBa‘HfTaWReOsIrPtAquTleBl’

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
La Ce Pr Nd Pm Sm Eu Gd Th Dy Ho Er Tm Yb Lu
89 90 91 92 93 94

Ac Th Pa U Np Pu

Ran 3 weeks of @
targeted syntheses @ L
in the A-Lab —

N. J. Szymanski, B. Rendy, Y. Fei, et al, Nature (2023).
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Initial test case: synthesizing DFT-stable compounds CEMS
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71%
success per
target

A high success rate per target
demonstrates the connection
between DFT-calculated
stability and synthesizability




Initial test case: synthesizing DFT-stable compounds CEMS
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37%
success per
130/355 recipe

recipes

A much lower success rate per
recipe demonstrates how
challenging synthesis can be...
even for stable materials!




Again, does it work? Yes, but with limitations... CEMS
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3 : — Calculated
S 4000-
=
2 2000- Characterization remains challenging,
f'cﬁ and some of these materials contain
— . impurities that are difficult to identify

Difference

Not a good fit!
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Again, does it work? Yes, but with limitations... CEMS
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| l | Ag

Human experts
I I i wimnenrmi

to the rescue!

6000 - e (QObserved
— C(Calculated

Manual analysis leads to
a much better fit
2000

Intensity (counts)
I
S
o

, Ag impurities are present...
Difference C
o3 More optimization needed!




In progress: incorporating additional characterization CEMS
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In the loop: SEM/EDS

This can give information regarding
composition homogeneity, but the
results are limited in their precision

Out of the loop: ICP-MS

uuuuuuu

Provides more precise composition,
but is also more difficult to automate




Many more opportunities for automation exist! CEMS

@\/ B3
RO

& Matemals Science
Materials design Testing, optimization, scale-up

Synthesis and characterization




Many more opportunities for automation exist! CEMS
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Testing, optimization, scale-up

> Staée 3 >

There is still quite a disconnect between academia and industry here

- Room for collaboration! Educate us on what is important to you ©
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