

CHEN 5802: Guest lecture on Active Learning

bartel.cems.umn.edu

Chemical Engineering & Materials Science

University of Minnesota

Nathan J. Szymanski

Existing data (x_i, y_i)

What you've learned so far in this course

Domain (without data)

- We have some domain over which new data (*x_i*, *y_i*) can be collected
- In practice, data collection tends to be costly and time consuming

Density Functional Theory

Required time: **min to hours**

An example: ML trained on DFT calculations

Density Functional Theory

Required time: **min to hours**

Machine learning potentials

Required time: **seconds**

An example: ML trained on DFT calculations

Density Functional Theory

Required time: min to hours

Machine learning potentials

Required time: **seconds**

- We can train on existing DFT calculations, but these tend be biased in their sampling of certain chemistries...
- New DFT calculations can be run to supplement the training data

An example: autonomous (AI-driven) experiments

• The A-Lab tries to make new materials whose recipes are unknown

An example: autonomous (Al-driven) experiments

- The A-Lab tries to make new materials whose recipes are unknown
- But *thousands* of synthesis recipes are often possible, and each recipe requires **hours to days** of experiments → we <u>cannot</u> test them all!

Domain (without data)

- We have some domain over which new data (*x_i*, *y_i*) can be collected
- In practice, data collection tends to be costly and time consuming
- In which parts of the domain should we collect training data? The goal is to achieve good model performance with limited data

We can iterate between data collection with model training

Suppose we are collecting data to train a **classification** model in 2D (x-y) space

Initial dataset

We can iterate between data collection with model training

Suppose we are collecting data to train a **classification** model in 2D (x-y) space

- Based on this initial training data, our model predicts a boundary to separate the two classes
- But there is likely a high amount of *uncertainty* in this prediction owing to limited data

We can iterate between data collection with model training

Suppose we are collecting data to train a **classification** model in 2D (x-y) space

- With more data, the boundary changes
- This prediction should have **less uncertainty**

Suppose we are collecting data to train a **classification** model in 2D (x-y) space

Class 1
Class 2

We can iterate between data collection with model training

- Ideally, we could focus our data collection on areas near the decision boundary
- For this, we need the *model uncertainty* as a function of the domain space

First, let's distinguish epistemic vs. aleatoric uncertainty

Aleatoric uncertainty:

Due to inherent randomness (noise) in the data

Epistemic uncertainty:

Due to a lack of knowledge, usually caused by the absence of training data

First, let's distinguish epistemic vs. aleatoric uncertainty

Method 1: ensemble methods for <u>classification</u>

These models are each trained **independently**, either with **different initializations** or on **different parts of the training data**

Method 1: ensemble methods for <u>classification</u>

Class 1 is predicted most often (3/5 times) \rightarrow 60% confidence Higher confidence \leftrightarrow Lower uncertainty

Method 1: ensemble methods for <u>regression</u>

We can use the standard deviation

as a measure of uncertainty

$$\boldsymbol{\sigma} = \sqrt{\frac{\sum_{i} (\boldsymbol{y}_{i} - \boldsymbol{\mu})^{2}}{N}}$$

 y_i = individual predictions

 μ = mean of the predictions

N = number of predictions (this should be as large as possible)

Method 1: ensemble methods for <u>regression</u>

We can use the standard deviation

as a measure of uncertainty

$$\boldsymbol{\sigma} = \sqrt{\frac{\sum_{i} (\boldsymbol{y}_{i} - \boldsymbol{\mu})^{2}}{N}}$$

In this case:

Mean prediction = **6.43** Std. deviation = **0.56**

Building a Gaussian process requires a prior

A *prior* describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we'll need **two things** to define our prior:

Building a Gaussian process requires a prior

A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we'll need **two things** to define our prior:

The **mean** function: $\mu(x)$

This defines the average value of all functions at each point in the domain space

Usually, we start with $\mu(x) = 0$ and then modify it as more data is collected

Building a Gaussian process requires a prior

A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we'll need **two things** to define our prior:

The **mean** function: $\mu(x)$

This defines the average value of all functions at each point in the domain space

Usually, we start with $\mu(x) = 0$ and then modify it as more data is collected The **covariance** function: K(x, x')

This defines how function values at different points in the domain are correlated with one another

In simpler terms, it defines how "smooth" our functions are

Commonly used for covariance: the radial basis function

$$K(x, x') = \exp\left(-\frac{|x - x'|}{2\sigma^2}\right)$$

• When x and x' are close to one another, the RBF kernel $K(x, x') \rightarrow 1$, which means f(x) and f(x') are highly correlated and should exhibit similar values

Commonly used for covariance: the radial basis function

$$K(x, x') = \exp\left(-\frac{|x - x'|}{2\sigma^2}\right)$$

- When x and x' are close to one another, the RBF kernel $K(x, x') \rightarrow 1$, which means f(x) and f(x') are highly correlated and should exhibit similar values
- When x and x' are far from one another, the RBF kernel $K(x, x') \rightarrow 0$, which means f(x) and f(x') are **not** correlated

Commonly used for covariance: the radial basis function

$$K(x,x') = \exp\left(-\frac{|x-x'|}{2\sigma^2}\right)$$

- When x and x' are close to one another, the RBF kernel $K(x, x') \rightarrow 1$, which means f(x) and f(x') are highly correlated and should exhibit similar values
- When x and x' are far from one another, the RBF kernel $K(x, x') \rightarrow 0$, which means f(x) and f(x') are **not** correlated
- σ is a hyperparameter that measures the correlation length. Essentially, this controls how smooth we want our functions to be.

σ is a user-chosen parameter that controls "smoothness"

12/20

We can get uncertainty from the prediction variance

The variance is the square of the standard deviation: $Var(x) = \sigma^2(x)$

We can get uncertainty from the prediction variance

The variance is the square of the standard deviation: $Var(x) = \sigma^2(x)$

Large variance exist in regions without much data \rightarrow high uncertainty!

We can get uncertainty from the prediction variance

The variance is the square of the standard deviation: $Var(x) = \sigma^2(x)$

Little to no variance around the known data → low uncertainty!

To improve model accuracy: sample high-uncertainty areas

If all we care about is model accuracy, then we should sample the part of the domain with the **highest uncertainty**

To improve model accuracy: sample high-uncertainty areas

To improve model accuracy: sample high-uncertainty areas

Now, what if we want to use our model for optimization?

Objective: Find the value of x where f(x) is maximal

To accomplish this, we need to balance **exploration** with **exploitation**

Now, what if we want to use our model for optimization?

Objective: Find the value of x where f(x) is maximal

To accomplish this, we need to balance **exploration** with **exploitation**

Exploration:

Collecting new training data in parts of the domain that are under-sampled and have high model uncertainty

This is basically what we've been prioritizing so far

Now, what if we want to use our model for optimization?

Objective: Find the value of x where f(x) is maximal

To accomplish this, we need to balance *exploration* with *exploitation*

Exploration:

Collecting new training data in parts of the domain that are under-sampled and have high model uncertainty

Exploitation:

Collecting new training data in parts of the domain where f(x) is expected to be optimal

Acquisition functions balance exploration/exploitation

Acquisition functions quantify the **anticipated benefit** of sampling a point (*x*)

Acquisition functions quantify the **anticipated benefit** of sampling a point (*x*)

Upper Confidence Bound (UCB):

$$a(x,\beta) = \mu(x) + \beta\sigma(x)$$

Mean of the predicted function

Uncertainty of the predicted function

β is a hyperparameter which we can use to control the exploration-exploitation tradeoff

 $\beta = 0$

Pure exploitation

Sample the point corresponding to the maximum in the acquisition function

 $\beta = 0$

Pure exploitation

 $\beta = 0$

Pure exploitation

 $\beta = 1$

Some exploration

 $\beta = 2$

More exploration

 $\beta = 4$

And even more exploration

Putting it all together: Bayesian optimization!

Widely used for optimization in the **physical sciences**, where experiments require a lot of time, money, and effort

From "Bayesian Hyperparameter Optimization" by Matti Karppanen

Surrogate models:

- Gaussian processes are most popular since they provide uncertainty
- But any ML model can be used neural networks are increasingly common

Acquisition functions:

• Many different ones exist: upper confidence bound, expected improvement, entropy search, and so on...All balance exploration/exploitation differently

Prior:

- The mean and covariance should be set to reflect your system
- For example, a periodic system should use periodic covariance (trig functions)

Surrogate models:

- Gaussian processes are most popular since they provide uncertainty
- But any ML model can be used neural networks are increasingly common

Acquisition functions:

• Many different ones exist: upper confidence bound, expected improvement, entropy search, and so on...All balance exploration/exploitation differently

Prior:

- The mean and covariance should be set to reflect your system
- For example, a periodic system should use periodic covariance (trig functions)

Surrogate models:

- Gaussian processes are most popular since they provide uncertainty
- But any ML model can be used neural networks are increasingly common

Acquisition functions:

• Many different ones exist: upper confidence bound, expected improvement, entropy search, and so on...All balance exploration/exploitation differently

Prior:

- The mean and covariance should be set to reflect your system
- For example, a periodic system should use periodic covariance (trig functions)

