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What you've learned so far in this course CEMS
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Existing data (x;,v;)
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What you've learned so far in this course

Existing data (x;,v;)

>

Used to train
ML models
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Regression

Classification
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But often, training data is missing...we need to collect it! CEMS

Chemical Engineering
I

& Materials Science

Domain (without data) « We have some domain over which new

data (x;, y;) can be collected

 |n practice, data collection tends to be
> ? costly and time consuming




An example: ML trained on DFT calculations CEMS

Chemical Engineering
& Materials Science

Density Functional Theory

Required time: min to hours




An example: ML trained on DFT calculations CEMS
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Density Functional Theory Machine learning potentials
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An example: ML trained on DFT calculations CEMS

Chemical Engineering
& Materials Science

Density Functional Theory Machine learning potentials

Required time: seconds

* We can train on existing DFT calculations,
but these tend be biased in their sampling
of certain chemistries...

Cobm  Scedum  Tasm Ve Ovomem

 New DFT calculations can be run to
supplement the training data
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An example: autonomous (Al-driven) experiments CEMS

Chemical Engineering
& Materials Science

\} Machine learning

« The A-Lab tries to make new materials whose recipes are unknown




An example: autonomous (Al-driven) experiments CEMS

Chemical Engineering
& Materials Science

\} Machine learning

« The A-Lab tries to make new materials whose recipes are unknown

« But thousands of synthesis recipes are often possible, and each recipe
requires hours to days of experiments - we cannot test them all!




CEMS

The key question: which data should we collect? ol M
S & Materials Science

Domain (without data)

* In which parts of the domain should

we collect training data? The goal is to
X achieve good model performance
with limited data




We can iterate between data collection with model training CEMS

Chemical Engineering
& Materials Science

Suppose we are collecting data to train a classification model in 2D (x-y) space

Initial dataset

X

® Class1 ® C(lass 2



We can iterate between data collection with model training CEMS
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Suppose we are collecting data to train a classification model in 2D (x-y) space

Initial dataset

o l: « Based on this initial training data, our model
': . ® predicts a boundary to separate the two classes
>~ e ';
: « But there is likely a high amount of uncertainty
I e In this prediction owing to limited data
° |
X

® Class1 ® C(lass 2



We can iterate between data collection with model training

Suppose we are collecting data to train a classification model in 2D (x-y) space

Initial dataset

2nd jteration
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With more data, the
boundary changes

This prediction should
have less uncertainty



We can iterate between data collection with model training

Initial dataset
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3rd jteration
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Suppose we are collecting data to train a classification model in 2D (x-y) space




We can iterate between data collection with model training CEMS

Chemical Engineering
& Materials Science

3rd jteration
« |deally, we could focus our data collection ¢ ° e @
on areas near the decision boundary . o o'
o
. . O
* For this, we need the model uncertainty as 2K % Y .
a function of the domain space ® o9 °
® oo ° o
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First, let’s distinguish epistemic vs. aleatoric uncertainty CEMS

Chemical Engineering
S & Materials Science
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= Aleatoric uncertainty:

Due to inherent randomness
(noise) in the data

> 0
-5 Aleatoric Epistemic uncertainty:

Due to a lack of knowledge,

, > usually caused by the absence

" SEEEEEE of training data
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First, let’s distinguish epistemic vs. aleatoric uncertainty CEMS

Chemical Engineering

S & Materials Science

We'll focus on this type of
uncertainty from here on out!
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Epistemic uncertainty:

Due to a lack of knowledge,
usually caused by the absence
of training data
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Method 1: ensemble methods for classification CEMS

> (xi, i)

Chemical Engineering
& Materials Science

Model 1 Model2 Model3 Model4 Model5

These models are each trained independently,
either with different initializations or on

different parts of the training data



Method 1: ensemble methods for classification CEMS

Chemical Engineering
& Materials Science

SR WF WF Qe Q¥

Class 2 Class 1 Class 1 Class 2 Class 1
X

Class 1 is predicted most often (3/5 times) 2> 60% confidence

Higher confidence < Lower uncertainty



Method 1: ensemble methods for regression CEMS

Chemical Engineering
& Materials Science
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X
| Model 1T Model2 Model3 Model4 Model5
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I 6.48 5.42 7.01 6.33 6.89
X
y; = individual predictions
We can use the o
standard deviation 5 = 2 (v — 1n)? u = mean of the predictions
as a measure of \ N N = number of predictions
uncertainty (this should be as large as possible)



Method 1: ensemble methods for regression CEMS

Chemical Engineering
& Materials Science
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In this case:

We can use the
standard deviation _ 2 (i — w)? Mean prediction = 6.43
asameasureof 9= N o
\ Std. deviation = 0.56

uncertainty



Method 2: Gaussian processes have “built-in” uncertainty CEMS

Chemical Engineering
& Materials Science

Consider a set of observed data (x;, y;) from which we aim to model y = f(x)

2
e Observed data
1_
o o
X 0
Y
_1- [ )
B 1 0 i >
X

For a nice explanation, see: Gaussian Processes for Dummies
10/20
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https://katbailey.github.io/post/gaussian-processes-for-dummies/
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2
e Observed data
1 .
. . A Gaussian process (GP)
— describes a distribution over
= 0 the possible functions f(x)
that are consistent with the
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Consider a set of observed data (x;, y;) from which we aim to model y = f(x)

e Observed data

A Gaussian process (GP)
describes a distribution over
the possible functions f(x)
that are consistent with the
observed datapoints (x;, y;)
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Method 2: Gaussian processes have “built-in” uncertainty CEMS

Chemical Engineering
& Materials Science

Consider a set of observed data (x;, y;) from which we aim to model y = f(x)

2 Vo
e Observed data
A
1 \ . . .
/ | But in principle, these

= /\ functions could be anything...
x 0 ' L)
N

/IR | How do we reasonably
constrain them?

—2 -1 0 1 2
X

For a nice explanation, see: Gaussian Processes for Dummies
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Building a Gaussian process requires a prior CEMS

Chemical Engineering

S & Materials Science

A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we'll need two things to define our prior:



Building a Gaussian process requires a prior CEMS
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A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we'll need two things to define our prior:

[ The mean function: u(x) ]

This defines the average value
of all functions at each point in
the domain space

Usually, we start with u(x) = 0
and then modify it as more
data is collected

]
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Building a Gaussian process requires a prior CEMS

Chemical Engineering

S & Materials Science

A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we'll need two things to define our prior:

[ The mean function: u(x) ] [ The covariance function: K (x, x) ]

This defines the average value This defines how function values

of all functions at each point in at different points in the domain
the domain space are correlated with one another

Usually, we start with u(x) = 0
and then modify it as more
data is collected

In simpler terms, it defines how
"smooth” our functions are

]
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Commonly used for covariance: the radial basis function CEMS

Chemical Engineering
& Materials Science

, lx — x|
K(x,x') = exp 52

« When x and x’ are close to one another, the RBF kernel K(x,x') — 1, which
means f(x) and f(x') are highly correlated and should exhibit similar values



Commonly used for covariance: the radial basis function CEMS

Chemical Engineering
, lx — x|
K(x,x') = exp

& Materials Science
2
20

« When x and x’ are close to one another, the RBF kernel K(x,x') — 1, which
means f(x) and f(x') are highly correlated and should exhibit similar values

« When x and x' are far from one another, the RBF kernel K(x, x’) — 0, which
means f(x) and f(x') are not correlated



Commonly used for covariance: the radial basis function CEMS

Chemical Engineering
& Materials Science

[x — x|
20°

K(x,x') = exp

« o is a hyperparameter that measures the correlation length. Essentially, this
controls how smooth we want our functions to be.



o is a user-chosen parameter that controls “smoothness”

Observed data

CEMS

Chemical Engineering
& Materials Science

e Observed data

Iy

—2

Observed data

o= O.1

Looks reasonable, but
notice there is no
spread...These simple
models are likely to
be overconfident




We can get uncertainty from the prediction variance CEMS

Chemical Engineering
& Materials Science

2

O = 1 e Observed data

L
The variance is the square of the
standard deviation: Var(x) = ¢%(x)




We can get uncertainty from the prediction variance CEMS

Chemical Engineering
& Materials Science

® Observed data
—— Mean prediction
11 Prediction variance

The variance is the square of the
standard deviation: Var(x) = ¢%(x)

Large variance exist in regions without much data = high uncertainty!

]
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We can get uncertainty from the prediction variance CEMS

Chemical Engineering
& Materials Science

® Observed data
—— Mean prediction
11 Prediction variance

The variance is the square of the
standard deviation: Var(x) = ¢%(x)

Little to no variance around the known data < low uncertainty!

]
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To improve model accuracy: sample high-uncertainty areas CEMS

Chemical Engineering

S & Materials Science

: ® Observed data
I —— Mean prediction

11 | Prediction varianc? ;
i If all we care about is model accuracy,
i

then we should sample the part of the

domain with the highest uncertainty




To improve model accuracy: sample high-uncertainty areas CEMS

® Observed data
—— Mean prediction

|
|
I o )
11 | Prediction variance
| g
|
|

Re-train the GP using
the updated dataset

Chemical Engineering
& Materials Science

If all we care about is model accuracy,
then we should sample the part of the
domain with the highest uncertainty

® Observed data
—— Mean prediction
11 Prediction variance -




To improve model accuracy: sample high-uncertainty areas CEMS

Chemical Engineering
I

& Materials Science
2

® Observed data
—— Mean prediction
11 Prediction variance

Repeat this process until
you are happy with your
model’s uncertainty over

the entire domain...

R -1 0 1 2
X 2 _
) Ostrved data
—— Meay prediction
1- Predlction varianc/:e r

Re-train the GP using
the updated dataset




Now, what if we want to use our model for optimization? CEMS

® Observed data
—— Mean prediction
Prediction variance

Chemical Engineering
& Materials Science

Objective:
Find the value of x where f(x) is maximal

To accomplish this, we need to balance
exploration with exploitation




Now, what if we want to use our model for optimization? CEMS
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® Observed data

P rezrlw Sredicti(.)n Objective:
. rediction variance - . 1 I
: Find the value of x where f(x) is maximal

To accomplish this, we need to balance
exploration with exploitation

-2 -1 0 1 2
X
Exploration:

Collecting new training data in parts of
the domain that are under-sampled
and have high model uncertainty

_ This is basically what we've
been prioritizing so far

]
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Now, what if we want to use our model for optimization? CEMS

® Observed data
—— Mean prediction
Prediction variance -

Chemical Engineering
& Materials Science

Objective:
Find the value of x where f(x) is maximal

To accomplish this, we need to balance
exploration with exploitation

Exploitation:

Collecting new training data in parts of
the domain where f(x) is expected to
be optimal

]
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Acquisition functions balance exploration/exploitation CEMS

Chemical Engineering
& Materials Science

Acquisition functions quantify the anticipated benefit of sampling a point (x)



Acquisition functions balance exploration/exploitation CEMS

Chemical Engineering
& Materials Science

Acquisition functions quantify the anticipated benefit of sampling a point (x)

Upper Confidence Bound (UCB):

a(x,B) = ulx) + po(x)

[\

Mean of the Uncertainty of the
predicted function predicted function

p is a hyperparameter which we can use to
control the exploration-exploitation tradeoff



Controlling the exploration-exploitation tradeoff with 8 CEMS
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® Observed data
—— Mean prediction
11 Prediction variance

—— UCB Acquisition Function

B =0

Pure exploitation




Controlling the exploration-exploitation tradeoff with CEMS

Chemical Engineering

I & Materials Science
2 _
® Observed data :
—— Mean prediction i
11 Prediction variance 1

Sample the point corresponding
to the maximum in the
acquisition function

—— UCB Acquisition Function

B =0

Pure exploitation




CEMS
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Controlling the exploration-exploitation tradeoff with g

Observed data

—— Mean prediction
Prediction variance

Observed data

—— Mean prediction
Prediction variance

—— UCB Acquisition Function

g =0

Pure exploitation

—— UCB Acquisition Function

B=1

Some exploration




Controlling the exploration-exploitation tradeoff with CEMS

Chemical Engineering

N & Materials Science
1 ® Observed data | ® Observed data
| —— Mean prediction | —— Mean prediction
1- : Prediction variance 1 : Prediction variance
L ) r T e e T T
0 _ 1
1 S 0
I A |
: -
—1- 1 )
| rm -
N <
~ "
-2 - -2 |
| |
| |
|
|
|
|
|
—— UCB Acc#Jisition Function —— UCB Acql{sition Function

B =2 B =4

More exploration And even more exploration




Putting it all together: Bayesian optimization! CEMS

Chemical Engineering

S & Materials Science

Widely used for
optimization in the
physical sciences,
where experiments
require a lot of time,
® roisy opservations money, and effort

Model Performance

== ground truth

——surrogate function

U | ' I 1
0.00 0.25 0.50 0.75 1.00

Expected improvement From " Bayesia N

| Hyperparameter
i Optimization” by
T [

0.00 0.25 050 075 1.00 Matti Ka rppanen




There is a lot that can be tuned in Bayesian optimization! CEMS

Chemical Engineering

S & Materials Science

Surrogate models:

« Gaussian processes are most popular since they provide uncertainty
« But any ML model can be used — neural networks are increasingly common



There is a lot that can be tuned in Bayesian optimization! CEMS

Chemical Engineering

S & Materials Science

Acquisition functions:

« Many different ones exist: upper confidence bound, expected improvement,
entropy search, and so on...All balance exploration/exploitation differently



There is a lot that can be tuned in Bayesian optimization! CEMS

Chemical Engineering

S & Materials Science

Prior:

« The mean and covariance should be set to reflect your system
« For example, a periodic system should use periodic covariance (trig functions)



