
bartel.cems.umn.edu

CHEN 5802: Guest lecture on
Active Learning

Nathan J. Szymanski

1/20

What you’ve learned so far in this course

Existing data (𝑥!, 𝑦!)

1/20

What you’ve learned so far in this course

Used to train
ML models

Existing data (𝑥!, 𝑦!)

1/20

What you’ve learned so far in this course

Used to train
ML models

Regression

Classification

Existing data (𝑥!, 𝑦!)

2/20

But often, training data is missing…we need to collect it!

• We have some domain over which new
data (𝑥!, 𝑦!) can be collected

• In practice, data collection tends to be
costly and time consuming

Domain (without data)

?

3/20

An example: ML trained on DFT calculations

Density Functional Theory

Properties

Required time: min to hours

3/20

An example: ML trained on DFT calculations

Density Functional Theory

Properties

Required time: min to hours

Machine learning potentials

Properties

Required time: seconds

3/20

An example: ML trained on DFT calculations

Density Functional Theory

Properties

Required time: min to hours

Machine learning potentials

Properties

Required time: seconds

• We can train on existing DFT calculations,
but these tend be biased in their sampling
of certain chemistries…

• New DFT calculations can be run to
supplement the training data

4/20

An example: autonomous (AI-driven) experiments

Experiments

Machine learning

• The A-Lab tries to make new materials whose recipes are unknown

4/20

An example: autonomous (AI-driven) experiments

Experiments

Machine learning

• The A-Lab tries to make new materials whose recipes are unknown

• But thousands of synthesis recipes are often possible, and each recipe
requires hours to days of experiments à we cannot test them all!

5/20

The key question: which data should we collect?

• We have some domain over which new
data (𝑥!, 𝑦!) can be collected

• In practice, data collection tends to be
costly and time consuming

• In which parts of the domain should
we collect training data? The goal is to
achieve good model performance
with limited data

Domain (without data)

?

6/20

We can iterate between data collection with model training

Initial dataset

Suppose we are collecting data to train a classification model in 2D (x-y) space

Class 1 Class 2

6/20

We can iterate between data collection with model training

Initial dataset

Suppose we are collecting data to train a classification model in 2D (x-y) space

Class 1 Class 2

• Based on this initial training data, our model
predicts a boundary to separate the two classes

• But there is likely a high amount of uncertainty
in this prediction owing to limited data

6/20

We can iterate between data collection with model training

Initial dataset

Suppose we are collecting data to train a classification model in 2D (x-y) space

2nd iteration

Class 1 Class 2

2

• With more data, the
boundary changes

• This prediction should
have less uncertainty

6/20

We can iterate between data collection with model training

Initial dataset

Suppose we are collecting data to train a classification model in 2D (x-y) space

2nd iteration 3rd iteration

Class 1 Class 2

2 22

6/20

We can iterate between data collection with model training

• Ideally, we could focus our data collection
on areas near the decision boundary

• For this, we need the model uncertainty as
a function of the domain space

3rd iteration

Class 1 Class 2

22

7/20

First, let’s distinguish epistemic vs. aleatoric uncertainty

x

y

Aleatoric uncertainty:
Due to inherent randomness
(noise) in the data

Epistemic uncertainty:
Due to a lack of knowledge,
usually caused by the absence
of training data

7/20

First, let’s distinguish epistemic vs. aleatoric uncertainty

x

y

We’ll focus on this type of
uncertainty from here on out!

Epistemic uncertainty:
Due to a lack of knowledge,
usually caused by the absence
of training data

8/20

Method 1: ensemble methods for classification

These models are each trained independently,
either with different initializations or on

different parts of the training data

Model 1 Model 2 Model 3 Model 4 Model 5

2(𝑥!, 𝑦!)

?

8/20

Method 1: ensemble methods for classification

Model 1 Model 2 Model 3 Model 4 Model 5

Class 2 Class 1 Class 1 Class 1Class 2

2(𝑥!, 𝑦!)

?

Class 1 is predicted most often (3/5 times) à 60% confidence

Higher confidence ↔ Lower uncertainty

9/20

Method 1: ensemble methods for regression

𝑥′

?
Model 1 Model 2 Model 3 Model 4 Model 5

6.48 5.42 7.01 6.896.33

𝝈 =
∑! 𝑦! − 𝜇 "

𝑁

We can use the
standard deviation

as a measure of
uncertainty

𝑦! = individual predictions

𝜇 = mean of the predictions

𝑁 = number of predictions
(this should be as large as possible)

9/20

Method 1: ensemble methods for regression

𝑥′

?
Model 1 Model 2 Model 3 Model 4 Model 5

6.48 5.42 7.01 6.896.33

𝝈 =
∑! 𝑦! − 𝜇 "

𝑁

We can use the
standard deviation

as a measure of
uncertainty

In this case:

Mean prediction = 6.43

Std. deviation = 0.56

10/20

Method 2: Gaussian processes have “built-in” uncertainty

For a nice explanation, see: Gaussian Processes for Dummies

Consider a set of observed data (𝒙𝒊, 𝒚𝒊) from which we aim to model 𝒚 = 𝒇(𝒙)

https://katbailey.github.io/post/gaussian-processes-for-dummies/

10/20

Method 2: Gaussian processes have “built-in” uncertainty

For a nice explanation, see: Gaussian Processes for Dummies

Consider a set of observed data (𝒙𝒊, 𝒚𝒊) from which we aim to model 𝒚 = 𝒇(𝒙)

A Gaussian process (GP)
describes a distribution over
the possible functions 𝒇(𝒙)
that are consistent with the
observed datapoints 𝑥!, 𝑦!

https://katbailey.github.io/post/gaussian-processes-for-dummies/

10/20

Method 2: Gaussian processes have “built-in” uncertainty

For a nice explanation, see: Gaussian Processes for Dummies

Consider a set of observed data (𝒙𝒊, 𝒚𝒊) from which we aim to model 𝒚 = 𝒇(𝒙)

A Gaussian process (GP)
describes a distribution over
the possible functions 𝒇(𝒙)
that are consistent with the
observed datapoints 𝑥!, 𝑦!

https://katbailey.github.io/post/gaussian-processes-for-dummies/

10/20

Method 2: Gaussian processes have “built-in” uncertainty

For a nice explanation, see: Gaussian Processes for Dummies

Consider a set of observed data (𝒙𝒊, 𝒚𝒊) from which we aim to model 𝒚 = 𝒇(𝒙)

But in principle, these
functions could be anything…

How do we reasonably
constrain them?

https://katbailey.github.io/post/gaussian-processes-for-dummies/

11/20

Building a Gaussian process requires a prior

A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we’ll need two things to define our prior:

11/20

Building a Gaussian process requires a prior

A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we’ll need two things to define our prior:

The mean function: 𝜇(𝑥)

This defines the average value
of all functions at each point in

the domain space

Usually, we start with 𝜇 𝑥 = 0
and then modify it as more

data is collected

11/20

Building a Gaussian process requires a prior

A prior describes an initial set of assumptions or beliefs we have about our system

To build a Gaussian process, we’ll need two things to define our prior:

The mean function: 𝜇(𝑥)

This defines the average value
of all functions at each point in

the domain space

Usually, we start with 𝜇 𝑥 = 0
and then modify it as more

data is collected

The covariance function: 𝐾(𝑥, 𝑥′)

This defines how function values
at different points in the domain
are correlated with one another

In simpler terms, it defines how
“smooth” our functions are

11/20

Commonly used for covariance: the radial basis function

𝐾 𝑥, 𝑥! = exp −
𝑥 − 𝑥′
2𝜎"

• When 𝒙 and 𝒙′ are close to one another, the RBF kernel 𝑲 𝒙, 𝒙# → 𝟏, which
means 𝒇(𝒙) and 𝒇(𝒙′) are highly correlated and should exhibit similar values

11/20

Commonly used for covariance: the radial basis function

𝐾 𝑥, 𝑥! = exp −
𝑥 − 𝑥′
2𝜎"

• When 𝒙 and 𝒙′ are close to one another, the RBF kernel 𝑲 𝒙, 𝒙# → 𝟏, which
means 𝒇(𝒙) and 𝒇(𝒙′) are highly correlated and should exhibit similar values

• When 𝒙 and 𝒙′ are far from one another, the RBF kernel 𝑲 𝒙, 𝒙# → 𝟎, which
means 𝒇(𝒙) and 𝒇(𝒙′) are not correlated

11/20

Commonly used for covariance: the radial basis function

𝐾 𝑥, 𝑥! = exp −
𝑥 − 𝑥′
2𝝈"

• When 𝒙 and 𝒙′ are close to one another, the RBF kernel 𝑲 𝒙, 𝒙# → 𝟏, which
means 𝒇(𝒙) and 𝒇(𝒙′) are highly correlated and should exhibit similar values

• When 𝒙 and 𝒙′ are far from one another, the RBF kernel 𝑲 𝒙, 𝒙# → 𝟎, which
means 𝒇(𝒙) and 𝒇(𝒙′) are not correlated

• 𝝈 is a hyperparameter that measures the correlation length. Essentially, this
controls how smooth we want our functions to be.

12/20

𝝈 is a user-chosen parameter that controls “smoothness”

𝜎 = 1

𝜎 = 0.1

𝜎 = 10

Looks reasonable, but
notice there is no
spread…These simple
models are likely to
be overconfident

13/20

We can get uncertainty from the prediction variance

𝜎 = 1
The variance is the square of the
standard deviation: 𝐕𝐚𝐫(𝒙) = 𝝈𝟐(𝒙)

13/20

We can get uncertainty from the prediction variance

The variance is the square of the
standard deviation: 𝐕𝐚𝐫(𝒙) = 𝝈𝟐(𝒙)

Large variance exist in regions without much data à high uncertainty!

13/20

We can get uncertainty from the prediction variance

The variance is the square of the
standard deviation: 𝐕𝐚𝐫(𝒙) = 𝝈𝟐(𝒙)

Little to no variance around the known data à low uncertainty!

14/20

To improve model accuracy: sample high-uncertainty areas

If all we care about is model accuracy,
then we should sample the part of the
domain with the highest uncertainty

14/20

To improve model accuracy: sample high-uncertainty areas

If all we care about is model accuracy,
then we should sample the part of the
domain with the highest uncertainty

Re-train the GP using
the updated dataset

14/20

To improve model accuracy: sample high-uncertainty areas

Repeat this process until
you are happy with your
model’s uncertainty over

the entire domain…

Re-train the GP using
the updated dataset

15/20

Now, what if we want to use our model for optimization?

Objective:
Find the value of 𝑥 where 𝑓(𝑥) is maximal

To accomplish this, we need to balance
exploration with exploitation

15/20

Now, what if we want to use our model for optimization?

Objective:
Find the value of 𝑥 where 𝑓(𝑥) is maximal

To accomplish this, we need to balance
exploration with exploitation

Exploration:

Collecting new training data in parts of
the domain that are under-sampled
and have high model uncertainty

This is basically what we’ve
been prioritizing so far

15/20

Now, what if we want to use our model for optimization?

Objective:
Find the value of 𝑥 where 𝑓(𝑥) is maximal

To accomplish this, we need to balance
exploration with exploitation

Exploration:

Collecting new training data in parts of
the domain that are under-sampled
and have high model uncertainty

Exploitation:

Collecting new training data in parts of
the domain where 𝑓(𝑥) is expected to

be optimal

16/20

Acquisition functions balance exploration/exploitation

Acquisition functions quantify the anticipated benefit of sampling a point (𝑥)

16/20

Acquisition functions balance exploration/exploitation

Upper Confidence Bound (UCB):

𝑎 𝑥, 𝛽 = 𝜇 𝑥 + 𝛽𝜎(𝑥)

Mean of the
predicted function

Uncertainty of the
predicted function

𝜷 is a hyperparameter which we can use to
control the exploration-exploitation tradeoff

Acquisition functions quantify the anticipated benefit of sampling a point (𝑥)

16/20

Controlling the exploration-exploitation tradeoff with 𝜷

𝛽 = 0
Pure exploitation

16/20

Controlling the exploration-exploitation tradeoff with 𝜷

𝛽 = 0
Pure exploitation

Sample the point corresponding
to the maximum in the
acquisition function

16/20

Controlling the exploration-exploitation tradeoff with 𝜷

𝛽 = 0
Pure exploitation

𝛽 = 1
Some exploration

16/20

Controlling the exploration-exploitation tradeoff with 𝜷

𝛽 = 2
More exploration

𝛽 = 4
And even more exploration

17/20

Putting it all together: Bayesian optimization!

From “Bayesian
Hyperparameter
Optimization” by
Matti Karppanen

Widely used for
optimization in the
physical sciences,
where experiments
require a lot of time,
money, and effort

Surrogate models:
• Gaussian processes are most popular since they provide uncertainty
• But any ML model can be used – neural networks are increasingly common

Acquisition functions:
• Many different ones exist: upper confidence bound, expected improvement,

entropy search, and so on…All balance exploration/exploitation differently

Prior:
• The mean and covariance should be set to reflect your system
• For example, a periodic system should use periodic covariance (trig functions)

18/20

There is a lot that can be tuned in Bayesian optimization!

19/20

There is a lot that can be tuned in Bayesian optimization!

Surrogate models:
• Gaussian processes are most popular since they provide uncertainty
• But any ML model can be used – neural networks are increasingly common

Acquisition functions:
• Many different ones exist: upper confidence bound, expected improvement,

entropy search, and so on…All balance exploration/exploitation differently

Prior:
• The mean and covariance should be set to reflect your system
• For example, a periodic system should use periodic covariance (trig functions)

Surrogate models:
• Gaussian processes are most popular since they provide uncertainty
• But any ML model can be used – neural networks are increasingly common

Acquisition functions:
• Many different ones exist: upper confidence bound, expected improvement,

entropy search, and so on…All balance exploration/exploitation differently

Prior:
• The mean and covariance should be set to reflect your system
• For example, a periodic system should use periodic covariance (trig functions)

20/20

There is a lot that can be tuned in Bayesian optimization!

