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Automating XRD for fast and accurate phase analysis

Measurement speed tradeoff
Fast XRD scan P
Low resolution |

Slow XRD scan
High resolution
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Three components required for adaptive XRD

Model to perform
phase identification

> What phases may be present

Uncertainty
guantification

> When should you scan more

Feature importance
analysis

> Where should you scan
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Component #1: phase ID with neural networks

Experimental structures Simulated patterns

Cicsp

FIZ Karlsruhe

-

Broad Intensity
peaks changes

N. J. Szymanski et al., Chem. Mater (2021).

Convolutional neural network

=

Shifts
in 20

Data augmentation
from strain, texture, and
poor crystallinity

MnO
TiO

LiMn,0,

LiF
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https://ceder.berkeley.edu/publications/2021_szymanski_xrd_ML.pdf
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Prediction confidence estimated using an ensemble approach
Model 1

Component #2




Component #3: feature analysis with CAMs

CNN predicts dog Class activation map (CAM) highlights the features
that contribute most to the model’s prediction

1001
> For XRD, the largest
wn eaks are prioritized
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Adaptively driven XRD to maximize prediction confidence

Fast initial scan over 10°-60°

What phases are in
the sample?
b

10 20 30 40 50 60
26

Iexp

Given an unknown sample, first perform a
very fast initial scan — 2 min is usually enough
to make a preliminary prediction

/ Diffractometer \

Experimental i

sample \ ’ j
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Adaptively driven XRD to maximize prediction confidence
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Feed pattern to ML
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Fast initial scan over 10°-60°

What phases are in
the sample?
‘M_A A

10 20 30 40 50 60
26

|exp

Feed pattern to ML

¥ Pre-trained

" MLModel )

/ Diffractometer \

Experimental (=

sample K ’ " )
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Cicsp %‘ .

Icalc

22 15 8
Ti P || O | Choose chemical space
Identify probable phases

10

A Li,Ti,0,, Auzﬂos
,AAA,\ A . o Am , v -
20

30 40 50
26

60

If prediction
confidence < 50%

AM

Calculate CAM of each phase

Difference

Threshold _~

60

Make initial predictions and check if the model is confident.
If not, calculate the CAMs for all suspected phases.
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Adaptively driven XRD to maximize prediction confidence

Identify probable phases
o Aumso12 ALIZTIQ
IAI\A A A A IIL Am- : .\ : AL
10 20 30 40 50 60
20
Calculate CAM of each phase
S Difference
SR /. - P\ Threshold -
10 20 30 40 50 60
20

The areas with large differences in CAMs contain the most
valuable information to distinguish these two phases.
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Adaptively driven XRD to maximize prediction confidence
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Selective rescan proposed by ML

ML steers the diffractometer to rescan

Iexp

10

O~ f\ J these areas with increased resolution.

Updated pattern is fed back to ML.
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Adaptive XRD on 240 two-phase mixtures

% Impurities identified
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Adaptive XRD gives a higher detection rate

while requiring less scan time

All possible combinations of:
* Li,CO;, LiOH, La(OH);, ZrO,
* TiO,, Li,TiO3, and Li;PO,

With different weight fractions:
e 2%, 4%, 6%, ..., 18%, 20%

Two types of XRD measurements:

* Conventional 10 min scan
* Adaptive scan, 6 min on avg
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Adaptive XRD demo for impurity detection




In situ XRD: where scan speed is critical

Complete lnelt

When XRD is used to monitor
chemical reactions, it must be fast as

to not miss short-lived intermediates & iy . . R
15 20 \ New-1 * . ‘.°-. "
20 (A=0.72768 A) Cs&e2 +Sn+PSe, °

Haynes et al., JACS 139, 10814-10821 (2018).
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In situ XRD: where scan speed is critical

Our test case: Li;La;Zr,0,, (LLZO) synthesis

Precursors: La(OH),, Li,CO,, ZrO,

Heating profile: up to 1100 °C with 10-minute hold every 100 °C

1200
O Fast: 1 scan
: 600 Adaptive:
300 ~3 scans
% 50 100 150 200 250 300

Time (min)

Three different procedures were tested:

Bruker D8 Advance

Fast scans (1 min), Slow scans (10 min), Adaptive scans (1-10 min)
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Adaptive scans enable rapid in situ phase detection

Weight %
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Adaptive scans enable rapid in situ phase detection

) LaOOH
|l ‘H Loy ean il w. .

Fast

J«W When the scan is too fast, measurement noise

clouds the detection of smaller peaks

Slow

N
FMWW When the scan is too slow, phases transform

during the measurement = peaks disappear

?
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Adaptive scans enable rapid in situ phase detection

LaOOH
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Adaptive XRD reduces noise where
needed while maintaining fast scan time
- All peaks are detected

17/18




Conclusion

 Because ML is fast, it can be integrated directly
with experiments for on-the-fly analysis and
feedback = autonomous steering

* Adaptive XRD proves this concept as it reduces the
necessary scan time, enabling in situ XRD on a
standard in-lab diffractometer
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Code is available for use @ https://github.com/njszym/AdaptiveXRD
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