

Adaptively driven XRD measurements for autonomous phase identification

Nathan Szymanski Ceder group at LBNL April 17, 2023

Automating XRD for *fast* and accurate phase analysis

Automating XRD for *fast* and accurate phase analysis

Three components required for adaptive XRD

Component #1: phase ID with neural networks

Component #2: uncertainty assessment via ensemble

Component #3: feature analysis with CAMs

CNN predicts dog

CNN predicts cat

Class activation map (CAM) highlights the features that contribute most to the model's prediction

Example from Keras tutorials

Given an unknown sample, first perform a very fast initial scan – 2 min is usually enough to make a preliminary prediction

Make initial predictions and check if the model is confident. If not, calculate the CAMs for all suspected phases.

The areas with large *differences* in CAMs contain the most valuable information to distinguish these two phases.

Updated pattern is fed back to ML.

Adaptive XRD gives a higher detection rate while requiring less scan time

All possible combinations of:

- Li₂CO₃, LiOH, La(OH)₃, ZrO₂
- TiO₂, Li₂TiO₃, and Li₃PO₄

With different weight fractions:

• 2%, 4%, 6%, ..., 18%, 20%

Two types of XRD measurements:

- Conventional 10 min scan
- Adaptive scan, 6 min on avg

Adaptive XRD demo for impurity detection

When XRD is used to monitor chemical reactions, it *must be fast* as to not miss short-lived intermediates

Haynes et al., JACS 139, 10814-10821 (2018).

In situ XRD: where scan speed is critical

Our test case: Li₇La₃Zr₂O₁₂ (LLZO) synthesis

Precursors: La(OH)₃, Li₂CO₃, ZrO₂

Heating profile: up to 1100 °C with 10-minute hold every 100 °C

Three different procedures were tested:

Adaptive scans enable rapid in situ phase detection

Adaptive scans enable rapid in situ phase detection

When the scan is too **fast**, measurement **noise** clouds the detection of smaller peaks

When the scan is too **slow**, phases transform during the measurement \rightarrow **peaks disappear**

Adaptive scans enable rapid in situ phase detection

Adaptive XRD reduces noise where needed while maintaining fast scan time → All peaks are detected

Conclusion

- Because ML is fast, it can be integrated directly with experiments for on-the-fly analysis and feedback → autonomous steering
- Adaptive XRD proves this concept as it reduces the necessary scan time, enabling *in situ* XRD on a standard in-lab diffractometer

ARTICLE OPEN Adaptively driven X-ray diffraction guided by machine learning for autonomous phase identification

Nathan J. Szymanski 1,2, Christopher J. Bartel 1,2, Yan Zeng², Mouhamad Diallo^{1,2}, Haegyeom Kim² and Gerbrand Ceder

Check for updates

Details in publication

Code is available for use @ https://github.com/njszym/AdaptiveXRD

Acknowledgements

Professor Gerbrand Ceder

Dr. Chris Bartel

Dr. Yan Zeng

Mouhamad Diallo

Nathan_Szymanski@berkeley.edu

@NJSzymanski

