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XRD: a cornerstone of inorganic materials research

Characterization for exploratory syntheses:

What’s in the sample? Solving this problem widely remains a manual task

Spectra can be 
highly complex!

Crystal structure ↔ X-ray diffraction pattern

XRD: a chemical fingerprint for phase ID



A growing need to reliably automate XRD analysis

Robotic hardware is accelerating experimentation – can software keep up?

1) High-throughput and parallelized experiments

• Generate large amounts of data requiring analysis
• EX: combinatorial thin film synthesis

Ludwig, npj Comp. Mat. (2019).

Grid of samples with 
distinct compositions

XRD dataset

Phase 
diagram

https://www.nature.com/articles/s41524-019-0205-0.pdf


A growing need to reliably automate XRD analysis

Robotic hardware is accelerating experimentation – can software keep up?

2) Self-driving laboratories for closed-loop experiments

• Experiments are guided by previous results
• Goal is to remove human from the loop

Can we make inorganic 
materials synthesis a rapid 
and autonomous process?

Reliable phase identification 
is critical to learn from each 

synthesis attempt



Traditional methods to automate phase ID

Approach:
 

• Extract peak positions and intensities
 

• Compare with known materials (e.g., 
from the ICSD or ICDD)

Limitations:
 

• Peak extraction is unreliable when:
 

o Peaks overlap
o Peaks “blend in” with noise
o Impurities are present



Traditional methods to automate phase ID

Approach:
 

• Simulate spectra of known phases
 

• Quantify overlap between measured 
and simulated spectra

Limitations:
 

• Patterns become dissimilar when 
experimental artifacts are present, 
common artifacts include:

 

o Strain, texture, small particle size, 
poor crystallinity



An improved approach: convolutional neural networks

Convolutional neural networks (CNNs) are widely used for image classification

Recent work suggests that CNNs 
outperform traditional methods for:

• Symmetry classification
• Single-phase identification

Park et al., IUCrJ (2017).
Oviedo et al., npj Comp. Mat. (2019).
Lee et al., Nat. Commun. (2020).
Maffettone et al., Nat. Comp. Sci. (2021).

https://journals.iucr.org/m/issues/2017/04/00/fc5018/fc5018.pdf
https://www.nature.com/articles/s41524-019-0196-x
https://www.nature.com/articles/s41467-019-13749-3
https://www.nature.com/articles/s43588-021-00059-2?proof=t


New developments in our work

1) Physics-informed data augmentation

2) Accounting for non-stoichiometry

3) A probabilistic treatment of multi-phase mixtures



Training the CNN using simulated XRD spectra

What data is used to train the CNN?
 

• Limited number of experimental XRD spectra
 

• Luckily, XRD spectra are easily simulated

Issues to consider:
 

• One spectrum per phase is not enough
 

• Ideal spectrum may not reflect experiment

Solution: perform data augmentation

Key question:
How to augment simulated spectra?

Simulated XRD spectrum

Does this look real?



Physics-informed data augmentation
Derive perturbations to spectra:

1) Shifts in peak positions ↔ strain in the unit cell:

2) Variations in peak intensities ↔ texture in the powder:

3) Broadening of peak widths ↔ small domain size:

𝜎!" =
𝜎## 𝜎#$ 𝜎#%
𝜎$# 𝜎$$ 𝜎$%
𝜎%# 𝜎%$ 𝜎%%

Must preserve symmetry!

Bounds:	±4%	strain



Physics-informed data augmentation
Derive perturbations to spectra:

1) Shifts in peak positions ↔ strain in the unit cell:

2) Variations in peak intensities ↔ texture in the powder:

3) Broadening of peak widths ↔ small domain size:
Intensity	scaling ∝ ℎ𝑘𝑙 &'()(''(* 2 ℎ′𝑘′𝑙′ &(+, Bounds:	±50%	intensity



Physics-informed data augmentation
Derive perturbations to spectra:

1) Shifts in peak positions ↔ strain in the unit cell:

2) Variations in peak intensities ↔ texture in the powder:

3) Broadening of peak widths ↔ small domain size:

𝜏 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃

FWHM 𝛽 ∝-# domain	size	(𝜏)

Scherrer equation:

Bounds: 1	nm	(broad)	to	100	nm	(narrow)



Physics-informed data augmentation

For a given reference phase:

50 spectra simulated from each artifact; changes sampled from normal distribution
à 150 augmented spectra (per phase) to train the CNN 



Training a model for the Li-Mn-Ti-O-F chemical space

Li-Mn-Ti-O-F:
• Useful system for many battery materials
• Challenging test case for diffraction due to similarity in Mn/Ti and O/F scattering factors

Training data: 140 phases extracted from the ICSD à 21,000 simulated spectra



Ensemble approach to yield probabilistic predictions

Probability distribution (%)Ensemble NN

Make many predictions using an 
ensemble of models with varied dropout



Test results on single-phase spectra

Separate 
artifacts

From the simulated spectra:
 

• 80/20 split for training/testing

Test results from the CNN:
 

• 94% of all test spectra are correctly classified

Accuracy is promising, but what is our baseline?



Test results on single-phase spectra

Separate 
artifacts

JADE from MDI:
 

• Peak search-match + full-profile comparison

Results from JADE:
 

• Only 78% of all spectra are correctly classified

Improvement 
of 16%



Test results: our CNN outperforms traditional methods

Separate 
artifacts

Tests on more complicated spectra:
 

• All artifacts + diffuse & noisy backgrounds

Results from the CNN vs. JADE:
 

• 92% accuracy with the CNN
 

• 68% accuracy with JADE

Mixed 
artifacts

Improvement 
of 24%



Test results: probabilities provide insight into accuracy

Probabilities provide a measure of confidence:
 

• Correct/incorrect predictions are clearly 
distinguished by their probabilities

• High probability à prediction is reliable

• Low probability à use caution
Correct 

predictions

Incorrect 
predictions



Limitations of current models

1) Physics-informed data augmentation

2) Accounting for non-stoichiometry

3) A probabilistic treatment of multi-phase mixtures



Non-stoichiometry: beyond perturbative treatment

Data augmentation accounts for 
minor perturbations from idealized 

reference patterns

However, larger changes occur 
when composition deviates from 

expected stoichiometry



Experimentally reported solid solutions are insufficient

Can we just use whatever solid solutions are available on the ICSD?
 

• No: the ICSD covers narrow regions of chemical space while 
leaving others sparse – bias toward highly-studied materials

What is available: 
Sparce, non-uniform 
coverage of 
compositions

What we want: 
Full and uniform 
coverage of compositions



Creating hypothetical solid solutions

1)  Enumerate pairs of stoichiometric phases
 

2)  For each pair, check whether the structures are isomorphic
 

3)  Check whether equivalent sites contain ions comparable in size (≤ 15%)

 

4)  If both criteria are satisfied, assume solubility is possible
 

5)  Interpolate a grid of hypothetical solid solutions by assuming Vegard’s law holds for:

Soluble?

• Lattice parameters
• Atomic positions
• Site occupancies

e.g., Mn  –  Mn0.75Ti0.25 – Mn0.5Ti0.5 – Mn0.25Ti0.75 – Ti



Testing on non-stoichiometric materials: Li-Mn-Ti-O-F

Training set:
 

• Hypothetical solid solutions

Test set:
 

• Real non-stoichiometric phases from the ICSD
 

Interpolate 155 new reference phases 
in the Li-Mn-Ti-O-F space 

20 experimental structures 
with unique compositions



Testing on non-stoichiometric materials

Classifications:
 

• Classifications are discrete – can only predict what we’ve trained on
  

 

Quantifying performance based on two metrics:
 

• Structure: is the predicted structure isomorphic to the true structure?
 

• Composition: mole fraction error between true and predicted compositions

Mn  Mn0.75Ti0.25  Mn0.5Ti0.5  Mn0.25Ti0.75  Ti

Compositions in training set

Mn0.8Ti0.2 Mn0.4Ti0.6

Experimental compositions

predictpredict



Testing on non-stoichiometric materials: structure

Before including hypothetical solid solutions:
 

• 11/20 (55%) of structures correctly identified 
 
After introducing hypothetical solid solutions:
 

• 19/20 (95%) of structures correctly identified

Including non-stoichiometry à 40% improvement

Training set:



Testing on non-stoichiometric materials: compositions
Composition is more difficult to predict:
  

• Lattice parameters often follow Vegard’s 
à structure classification is reliable

  

• The basis may not follow Vegard’s law; 
some ions can swap sites in the structure 
à limited accuracy for composition

Without NS With NS

Example:
Li/TM ion swap in 
spinel LiMn1-xTixO4

Including NS 
still reduces 

errors

This algorithm is not for refinement

Peak 
positions

Peak 
intensities



Limitations of current models

1) Physics-informed data augmentation

2) Accounting for non-stoichiometry

3) A probabilistic treatment of multi-phase mixtures



Possible methods for multi-phase identification

• Choose phases with high probabilities

• Problem: model may confuse similar 
reference phases

Approach #1 a:

• Train on simulated multi-phase spectra

• Problem: linear combinations of spectra 
à combinatorial data explosion

Approach #2 b:

a) Lee et al., Nat. Commun. (2020).
b) Maffettone et al., Nat. Comp. Sci. (2021).

https://www.nature.com/articles/s41467-019-13749-3
https://www.nature.com/articles/s43588-021-00059-2?proof=t


Possible methods for multi-phase identification

• Choose phases with high probabilities

• Problem: model may confuse similar 
reference phases

Approach #1:

Our solution:

Use probability to guide an iterative approach of 
phase identification and profile subtraction



Plug measured 
spectrum into CNN to 
identify the first phase

Our approach: phase ID + profile subtraction



Fit the identified peaks to 
the measured spectrum

Our approach: phase ID + profile subtraction



Subtract those peaks to obtain 
a new spectrum, which now 
excludes the known phase

Our approach: phase ID + profile subtraction



Repeat until all major 
peaks have been identified

Our approach: phase ID + profile subtraction



How to use probability as a guiding metric?

True phases: Li2TiO3 + Mn3O4 + Li2O

What if we just assume the most probable phase is correct at each step?

• First phase affects spectrum after profile subtraction
• Spectrum affects identification of remaining phases

à First step is over-prioritized

Low average 
confidence



A branching algorithm to maximize confidence

True phases: Li2TiO3 + Mn3O4 + Li2O

Higher average confidence

Solution: maximize the average confidence over all predicted phases



Test results for multi-phase classification

Methods tested:
 

• B-CNN: branching algorithm
  

• S-CNN 

a: choose the 2 or 3 most probable phases
 

• M-CNN 

b: train on idealized multi-phase spectra
 

• JADE: traditional profile-matching

The B-CNN is shown to outperform all other methods

87%

78%

a) Lee et al., Nat. Commun. (2020).
b) Maffettone et al., Nat. Comp. Sci. (2021).

https://www.nature.com/articles/s41467-019-13749-3
https://www.nature.com/articles/s43588-021-00059-2?proof=t


Validation on experimental spectra

Good match with 
simulated tests



Code availability

https://github.com/njszym/XRD-AutoAnalyzer

• Our approach can be generalized to any arbitrary composition space

• Code to automate data augmentation and model training: 

• Only requires a set of reference phases

Email: nathan_szymanski@berkeley.eduPreprint: https://arxiv.org/abs/2103.16664
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