

Data-driven decision making for autonomous materials synthesis

Nathan Szymanski Ceder group at UC Berkeley May 11, 2022

Spring MRS symposium DS01: Integrating ML and simulation for materials modeling, design, and manufacturing

Automated solid-state synthesis for inorganic materials

Automated **solid-state synthesis** for inorganic materials

Al-driven experiments

Decision making goal:

Identify precursors and conditions that lead to maximal yield of the target phase using a minimal number of experiments

To develop and test an algorithm, we need more **data**

Published synthesis data:

- **Sparse** sampling of design space
- **Bias** toward positive results
- **Repetition** of similar procedures

O. Kononova, ..., G. Ceder, Scientific Data 2019.

To develop and test an algorithm, we need more **data**

Completely populate the space

by testing different precursors and conditions Dataset acts as a **surrogate model** for the decision-making algorithm to query as it explores the space

Pragnay Nevatia

A comprehensive experimental synthesis dataset

Target: YBCO (YBa₂Cu₃O_{6+x}) \rightarrow T_c \approx 91 K superconductor

188 solid-state synthesis experiments

Hold time (\times 1)

4 hours

Precursors (×11)				
Y_2O_3	$Y_{2}C_{3}O_{9}$	BaO		
BaCO ₃	BaCuO ₂	BaO ₂		
$Ba_2Cu_3O_6$ $Y_2Cu_2O_5$				
CuCO ₃ Cu ₂ O CuO				
×47 Precursor Sets				

10 experiments (out of 188) led to phase pure YBCO

~5% of the space is optimal

How to efficiently identify?

Black box approach: Bayesian optimization (BO)

Exploration

Sample points to minimize uncertainty

Exploitation

Sample points to **maximize the objective**

Black box approach: Bayesian optimization (BO)

Exploration

Sample points to **minimize uncertainty**

Exploitation

Sample points to **maximize the objective**

Black box approach: Bayesian optimization (BO)

Exploration

Sample points to minimize uncertainty

Exploitation

Sample points to maximize the objective

BO optimizes temperature, but not precursors

BO learns to focus on high T (900 °C) to maximize YBCO yield 🙂 But...precursor selection is basically random 😕

Synthesis concepts can guide precursor selection

Solid-state reactions occur sequentially between *pairs* of phases

Step-by-step sequence of "2×2" reactions until equilibrium is reached

Synthesis concepts can guide precursor selection

Synthesis concepts can guide precursor selection

Physics informed optimization

Exploration

- Prioritize precursor sets with most <u>new</u> pairs
- Record pairwise reactions observed experimentally

Three possible pairwise reactions

Exploitation

- Prioritize precursors with large ΔG to form the target phase
- Update ∆G based on observed intermediate reactions

$Y_2Cu_2O_5 + BaO_2 + CuO \rightarrow YBCO + O_2$	-591 meV	

Physics informed optimization

Exploration

- Prioritize precursor sets with most <u>new pairs</u>
- Record pairwise reactions observed experimentally

Three possible pairwise reactions

Exploitation

- Prioritize precursors with large $\Delta \mathbf{G}$ to form the target phase
- Update ΔG based on observed intermediate reactions

Reaction	$\Delta \mathbf{G}$	
$Y_2O_3 + BaO_2 + CuCO_3 \rightarrow YBCO + O_2/CO_2$	-684 meV	
$Y_2Cu_2O_5 + BaO_2 + CuO \rightarrow YBCO + O_2$	-591 meV	
	•••	

Physics informed optimization

Exploitation

- Prioritize precursors with large ΔG to form the target phase
- Update ΔG based on observed intermediate reactions

Reaction	ΔG	
$Y_2O_3 + BaO_2 + CuCO_3 \rightarrow YBCO + O_2/CO_2$	-684 meV	
$Y_2Cu_2O_5 + BaO_2 + CuO \rightarrow YBCO + O_2$	-591 meV	
•••	•••	

- Physics-informed approach outperforms Bayesian optimization
- **29 precursor sets** tested to identify *all* optimal synthesis routes

- Physics-informed approach outperforms Bayesian optimization
- **29 precursor sets** tested to identify *all* optimal synthesis routes
- 51 pairwise reactions discovered

Phases	Temp.	Products
Y ₂ O ₃ BaCuO ₂	800-900 °C	Y_2BaCuO_5
$BaCuO_2 Y_2Cu_2O_5$	700-800 °C	YBCO

Conclusions

Black-box techniques can optimize synthesis temperature

Domain knowledge is needed to guide precursor selection

Grand vision: integration of decision making with automated experiments

Acknowledgements

Professor Gerbrand Ceder

Pragnay Nevatia

Dr. Yan Zeng

Dr. Chris Bartel

Nathan_Szymanski@berkeley.edu

@NJSzymanski

