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Automated solid-state synthesis for inorganic materials

1N. J. Szymanski, …, G. Ceder, Materials Horizons 2021. 
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Given a target phase, how 
do we synthesize it?
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Automated solid-state synthesis for inorganic materials

2N. J. Szymanski, …, G. Ceder, Materials Horizons 2021. 

Decision making goal:

Identify precursors and conditions 
that lead to maximal yield of the 
target phase using a minimal 
number of experiments

AI-driven experiments

AI proposes 
synthesis 
protocol

AI updates 
synthesis 
protocol 



To develop and test an algorithm, we need more data

Published synthesis data:

• Sparse sampling of design space
• Bias toward positive results
• Repetition of similar proceduresCo
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Synthesis data 
from the literature

O. Kononova, …, G. Ceder, Scientific Data 2019. 
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Dataset acts as a surrogate model 
for the decision-making algorithm 
to query as it explores the space

Completely populate the space 
by testing different precursors 

and conditions



A comprehensive experimental synthesis dataset
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Target: YBCO (YBa2Cu3O6+x) → Tc ≈ 91 K superconductor

188 solid-state synthesis experiments

Precursors (×11)Temperatures (×4)

600 °C 700 °C

800 °C 900 °C

Y2O3 Y2C3O9 BaO

BaO2BaCO3

Cu2O CuOCuCO3

BaCuO2

Ba2Cu3O6 Y2Cu2O5

Hold time (×1)

4 hours

10 experiments (out of 188) 
led to phase pure YBCO

~5% of the space is optimal

×47 Precursor Sets How to efficiently identify?

Pragnay Nevatia



Black box approach: Bayesian optimization (BO)
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Observed data

Uncertainty 
bounds 
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Exploration

Sample points to 
minimize uncertainty

Exploitation

Sample points to 
maximize the objective
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BO optimizes temperature, but not precursors
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Random
BO

Precursors + Temperature (600-900 °C) Precursors only (at 900 °C)

BO learns to focus on high T (900 °C) 
to maximize YBCO yield J

But…precursor selection is 
basically random L

Results averaged 
over 100 runs



Synthesis concepts can guide precursor selection
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Solid-state reactions occur sequentially between pairs of phases

A. Muira, C. Bartel, …, G. Ceder, W. Sun, Adv. Mater. 2021.

Step-by-step sequence of “2×2” reactions until equilibrium is reached

Pairwise reactions



Synthesis concepts can guide precursor selection

9M. Bianchini, …, G. Ceder, Nature Materials, 2020.

Reaction 1: large ∆G, fast

Precursors à intermediate phases à final products

Reactions 2 and 3: small ∆G, slow



Synthesis concepts can guide precursor selection

10M. Bianchini, …, G. Ceder, Nature Materials, 2020.

Re-designed reaction pathway for accelerated synthesis

Retain large ∆G at the target-
forming step, faster synthesis



Physics informed optimization
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Exploration

Three possible 
pairwise reactions

• Prioritize precursor sets 
with most new pairs

• Record pairwise reactions 
observed experimentally

Exploitation
• Prioritize precursors with large ∆𝐆 

to form the target phase
• Update ∆G based on observed 

intermediate reactions

Reaction ∆𝐆

Y2O3 + BaO2 + CuCO3 à YBCO + O2/CO2 -684 meV

Y2Cu2O5 + BaO2 + CuO à YBCO + O2 -591 meV

… …
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Physics informed optimization
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Exploitation
• Prioritize precursors with large ∆𝐆 

to form the target phase
• Update ∆G based on observed 

intermediate reactions

Reaction ∆𝐆

Y2O3 + BaO2 + CuCO3 à YBCO + O2/CO2 -684 meV

Y2Cu2O5 + BaO2 + CuO à YBCO + O2 -591 meV

… …

Cu2O + BaO2 + Y2O3

YBCO

∆G = −349	meV

Ba2Cu3O6 + Y2O3

YBCO

∆G′ = −77	meV
Predict

Cu2O|BaO2



Pairwise analysis leads to better precursor selection
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Physics-informed

BO

• Physics-informed approach 
outperforms Bayesian optimization

• 29 precursor sets tested to identify 
all optimal synthesis routes



Pairwise analysis leads to better precursor selection
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• Physics-informed approach 
outperforms Bayesian optimization

• 29 precursor sets tested to identify 
all optimal synthesis routes

• 51 pairwise reactions discovered

BO

Phases Temp. Products

Y2O3|BaCuO2 800-900 °C Y2BaCuO5

BaCuO2|Y2Cu2O5 700-800 °C YBCO

… …

Physics-informed



Conclusions
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Grand vision: integration of decision making with automated experiments

∆𝐆

Black-box techniques can 
optimize synthesis temperature

Domain knowledge is needed to 
guide precursor selection

Target phase
Optimized 

synthesis recipe
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