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The problem: synthesizing novel inorganic materials
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What compounds to make?
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For comparison: the ICSD (an experimental database) contains 
only about 50,000 entries whose structures match those in MP
à Many hypothetical structures have yet to be synthesized! 
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The method: solid-state synthesis from inorganic powders
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Synthesis recipe

50 mg Li2CO3

80 mg MnO

20 mg TiO2

800 °C (air)
24 hours

50 mg

80 mg

Target

LiMnTiO4

20 mg

Shake
‘n bake

800 °C, 24 hours

Final 
product!
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There are no well-defined rules 
for choosing the most effective 

precursors and conditions

Experimental issues like 
precursor volatility or 

reactivity with the container

Initial experiments often 
give zero target yield.

What to do next?
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How can we use  automation to address these limitations?



Closing the loop for autonomous materials synthesis
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Robotics

Optimization algorithms Machine learning

N. J. Szymanski et al., 
Materials Horizons (2021).



First step: automating the experiments with robotics
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Robotics

Optimization algorithms Machine learning



The A-Lab: three robotic stations work together
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Precursor preparation:
Gravimetric dispenser works with a 
robot arm to weigh and mix powders

Heating station:
A second robot arm operates on a rail, 

transferring samples to and from box furnaces

Characterization:
A third robot arm extracts the synthesis products 
and prepares them for X-ray diffraction

The hardware team



A video demo of the A-lab
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Experiments produce XRD patterns…How to interpret?
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Robotics

Optimization algorithms Machine learning



Phase analysis performed by neural networks
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Previously reported structures Simulated patterns Convolutional neural network

N. J. Szymanski et al., Chem. Mater (2021).

Shifts
in 2θ

Broad 
peaks

Intensity 
changes

Data augmentation
from strain, texture, and 
poor crystallinity

Materials Project

Each 
prediction has 
a confidence



If the experiment failed, what should the lab do next?
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Robotics

Optimization algorithms Machine learning



The lab’s decision-making agent: ARROWS3
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Target yieldCo
nd

iti
on

s

Precursors

• ARROWS3 is designed to optimize the 
selection of precursors while requiring 
few experimental iterations

It combines ab-initio (DFT) computed data with experimental observations to    
maximize the driving force at the target-forming step in the reaction pathway

N. J. Szymanski et al., Nature Commun. (2023).



Large driving force (∆G) enables faster reactions
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Precursor set 2 is expected 
to have a more effective 
synthesis pathway

Fast

Slow

Set 2

Set 1



Predict reaction outcomes 
of new precursor sets

ARROWS iteratively learns to prioritize max-∆G pathways
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Prioritize precursor sets 
with large ∆G

Perform experiments using 
suggested precursors

DFT-calculated 
energetics

∆G = driving force to form target phase

Precursors

Target
∆G 
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ARROWS iteratively learns to prioritize max-∆G pathways
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Prioritize precursor sets 
that retain large ∆G

Perform experiments using 
suggested precursors

Predict reaction outcomes 
of new precursor sets

∆G = driving force to form target phase

Precursors

Target
∆G 

Learn which reactions consume ∆G

Avoid cmpds 
that form 
impurities

Update 
ranking



We have now closed the loop!

12/24

Robotics

Optimization algorithms Machine learning



An application: synthesizing DFT-predicted compounds

13/24

42,000 thermodynamically stable cmpds

But only a fraction of these are 
experimentally reported

27,000 of the stable MP cmpds 
exist in the ICSD

The Materials Project



The Materials Project

An application: synthesizing DFT-predicted compounds
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42,000 thermodynamically stable cmpds

But only a fraction of these are 
experimentally reported

27,000 of the stable MP cmpds 
exist in the ICSD

Does this mean there are 15,000 new materials 
that could be experimentally realized?



Targets filtered by novelty and air stability
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Let’s validate whether a subset of these 
MP-stable materials can be synthesized!

146 final 
cmpds

“Google-stable”

Stable in air

Not in ICSD or mined literature

42,000 stable 
cmpds

No rare or unsafe elements



Targets filtered by novelty and air stability
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Let’s validate whether a subset of these 
MP-stable materials can be synthesized!

146 final 
cmpds

“Google-stable”

Stable in air

Not in ICSD or mined literature

Google DeepMind claims to have a 
database with > 1 million stable phases

MP-stable cmpds were confirmed to be 
on or near the hull (< 10 meV/atom) in 
Google’s database

42,000 stable 
cmpds

No rare or unsafe elements



Targets filtered by novelty and air stability
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Let’s validate whether a subset of these 
MP-stable materials can be synthesized!

146 final 
cmpds

“Google-stable”

Stable in air

Not in ICSD or mined literature

Check 1: grand potential, open to O2

𝜙!! = 𝐺 − 𝜇!! 𝑁!!

T = 600-1000 °C𝑝!! = 21,220 Pa 

Check 2: reactivity with CO2 and H2O

Li2O|CO2 à Li2CO3 (∆G < 0?)

Li2O|H2O à LiOH (∆G < 0?)

42,000 stable 
cmpds

No rare or unsafe elements
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Let’s validate whether a subset of these 
MP-stable materials can be synthesized!

42,000 stable 
cmpds

146 final 
cmpds

“Google-stable”

Stable in air

Not in ICSD or mined literature
Matt & Max

NLP database

No rare or unsafe elements



Targets filtered by novelty and air stability
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Let’s validate whether a subset of these 
MP-stable materials can be synthesized!

42,000 stable 
cmpds

146 final 
cmpds

“Google-stable”

Stable in air

No rare or unsafe elements

Not in ICSD or mined literature
Matt & Max

Radioactive:
Ac, Th, Pa, U, Np, Pu, Tc
Costly:
Pd, Pt, Rh, Ir, Au, Ru, Os, Re, Tl, Sc, Tm, Pm, Rb, Cs
Toxic:
Hg, As



No rare or unsafe elements
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Targets filtered by novelty and air stability
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Let’s validate whether a subset of these 
MP-stable materials can be synthesized!

42,000 stable 
cmpds

146 final 
cmpds

“Google-stable”

Stable in air

Not in ICSD or mined literature

Of these, we selected 58 cmpds for which 
precursors were readily available

No rare or unsafe elements



Targets filtered by novelty and air stability
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Of these, we selected 58 cmpds for which 
precursors were readily available

We tasked the A-Lab with synthesizing 
these 58 novel compounds and let it 

run for 3 weeks…How did it do?



Results from the A-Lab syntheses: 41/58 targets made!
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41/58 
targets

130/355 
recipes

A high success rate per target 
suggests that DFT-predicted 

stability is useful for finding new 
(synthesizable) materials J

A much lower success rate per 
recipe demonstrates how 

challenging synthesis can be…
even for stable materials!

71% success 
per target

37% success 
per recipe
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41/58 
targets

What about the materials that A-Lab could not make?
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17 targets could not be made, even 
after optimization in the A-Lab



Four major failure modes

18/24



Four major failure modes: Slow kinetics
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At least two of these targets can be obtained after the fact by:

1) Regrinding and reheating (Mg3NiO4)

2) Increased synthesis temperature (Y3Ga3In2O12)

< 50 meV/atom

Yuxing

11 targets



Four major failure modes: Amorphous product
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Diffuse XRD

2𝛉

• Sample melts at high T and doesn’t crystallize upon cooling à amorphous
• More prevalent in certain chemistries – e.g., phosphate-rich compounds



Four major failure modes: Precursor volatility
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Ammonium phosphate 
precursors tend to 
evaporate above 450 °C

For all samples targeting 
CaCr2P2O9, EDS shows a 

lower-than-expected 
amount of phosphorus

Mass lossNH4H2PO4
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For all samples targeting 
CaCr2P2O9, EDS shows a 

lower-than-expected 
amount of phosphorus

Ca|P Cr|P

Some precursors 
react to lock in PO4, 

others don’t

Ammonium phosphate 
precursors tend to 
evaporate above 450 °C

Mass lossNH4H2PO4



Four major failure modes: Incorrect computed hull
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Occasional Materials Project errors

• Target: YbMoO4

• Major products: Yb2O3 + MoO3 (no reaction)

o Upon further investigation, MP used Yb2+ pseudopotential but should have used Yb3+

o New calculations stabilize Yb2O3 and destabilize YbMoO4 (+100 meV/atom)

Matt



Conclusions
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• 43/58 targets successfully made (74% success rate) à DFT is effective

• These materials were discovered from < 3 weeks of experimentation

 à Automation enables rapid discovery; much more is possible!

• But even with automation, it’s not easy…

o Manual effort needed to refill chemicals, clean the consumables, and 
take a closer look at the most difficult XRD patterns

o Several failure modes still need to be overcome
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