The A-Lab:

Automating materials synthesis with robotics, DFT, and machine learning

Nathan Szymanski CEDER Group at UC Berkeley Future Labs Workshop, UCSB 11/02/2023

The problem: synthesizing novel inorganic materials

The problem: synthesizing novel inorganic materials

For comparison: the ICSD (an experimental database) contains only about 50,000 entries whose structures match those in MP

 \rightarrow Many hypothetical structures have yet to be synthesized!

The method: solid-state synthesis from inorganic powders

The method: solid-state synthesis from inorganic powders

There are no well-defined rules for choosing the most effective precursors and conditions

Experimental issues like

precursor volatility or reactivity with the container

Initial experiments often give **zero target yield.** What to do next?

The method: solid-state synthesis from inorganic powders

There are no well-defined rules for choosing the most effective precursors and conditions

Experimental issues like

precursor volatility or reactivity with the container

Initial experiments often give **zero target yield.** What to do next?

Closing the loop for autonomous materials synthesis

First step: automating the experiments with robotics

The A-Lab: three robotic stations work together

Precursor preparation:

Gravimetric dispenser works with a robot arm to weigh and mix powders

The hardware team

Heating station:

A second robot arm operates on a rail, transferring samples to and from box furnaces

Characterization:

A third robot arm extracts the synthesis products and prepares them for X-ray diffraction

Precursor preparation

Experiments produce **XRD patterns**...How to interpret?

Phase analysis performed by neural networks

If the experiment failed, what should the lab do next?

The lab's decision-making agent: ARROWS³

Target yielc

Autonomous Reaction Route Optimization With Solid-State Synthesis

ARROWS³ is designed to optimize the selection of precursors while requiring few experimental iterations

Precursors

It combines ab-initio (DFT) computed data with experimental observations to **maximize the driving force at the target-forming step** in the reaction pathway

Large driving force (ΔG) enables faster reactions

Predict reaction outcomes of new precursor sets

Perform experiments using suggested precursors

We have now closed the loop!

An application: synthesizing DFT-predicted compounds

DATABASE ENTRIES

42,000 thermodynamically stable cmpds

But only a fraction of these are experimentally reported

27,000 of the stable MP cmpds exist in the ICSD

The Materials Project

Explore Materials							Advanced Search Syntax											
¹ H	Q by Elements ▼					• 1	Na-O							×	search		2 He	
³ Li	⁴ Be											⁵ B	⁶ C	7 N	⁸ 0	⁹ F	10 Ne	
11 Na	12 Mg												¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	⁵³	⁵⁴ Xe	
55 Cs	56 Ba	57-71 La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn	
87 Fr	88 Ra	89-103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn							
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 LT		

An application: synthesizing DFT-predicted compounds

Let's validate whether a subset of these MP-stable materials can be synthesized!

Let's validate whether a subset of these MP-stable materials can be synthesized!

Check 1: grand potential, open to O₂

Check 2: reactivity with CO₂ and H₂O

Li₂O|CO₂ → Li₂CO₃ (Δ G < 0?) Li₂O|H₂O → LiOH (Δ G < 0?)

Let's validate whether a subset of these MP-stable materials can be synthesized!

Matt & Max

NLP database

Let's validate whether a subset of these MP-stable materials can be synthesized!

Matt & Max

Radioactive: Ac, Th, Pa, U, Np, Pu, Tc Costly:

Pd, Pt, Rh, Ir, Au, Ru, Os, Re, Tl, Sc, Tm, Pm, Rb, Cs

Toxic: Hg, As

Let's validate whether a subset of these MP-stable materials can be synthesized!

Let's validate whether a subset of these MP-stable materials can be synthesized!

We tasked the A-Lab with synthesizing these 58 novel compounds and let it run for 3 weeks...How did it do?

Of these, we selected **58 cmpds** for which precursors were readily available

Results from the A-Lab syntheses: 41/58 targets made!

A high success rate per target suggests that DFT-predicted stability is useful for finding new (synthesizable) materials © A much lower success rate per recipe demonstrates how challenging synthesis can be... even for stable materials!

Results from the A-Lab syntheses: 41/58 targets made!

A high success rate per target suggests that DFT-predicted stability is useful for finding new (synthesizable) materials © A much lower success rate per recipe demonstrates how challenging synthesis can be... even for stable materials!

What about the materials that A-Lab could **not** make?

17 targets could not be made, even after optimization in the A-Lab

Four major failure modes

Four major failure modes: Slow kinetics

At least two of these targets can be obtained after the fact by:

- 1) Regrinding and reheating (Mg₃NiO₄)
- 2) Increased synthesis temperature (Y₃Ga₃In₂O₁₂)

Four major failure modes: **Amorphous product**

- Sample melts at high T and doesn't crystallize upon cooling \rightarrow amorphous
- More prevalent in certain chemistries *e.g.*, phosphate-rich compounds

Four major failure modes: **Precursor volatility**

Ammonium phosphate precursors tend to evaporate above 450 °C For all samples targeting CaCr₂P₂O₉, EDS shows a lower-than-expected amount of phosphorus

Four major failure modes: **Precursor volatility**

Four major failure modes: Incorrect computed hull

Occasional Materials Project errors

- Target: YbMoO₄
- Major products: Yb₂O₃ + MoO₃ (no reaction)
 - Upon further investigation, MP used Yb²⁺ pseudopotential but should have used Yb³⁺
 - \circ New calculations stabilize Yb₂O₃ and destabilize YbMoO₄ (+100 meV/atom)

Matt

- 43/58 targets successfully made (74% success rate) → DFT is effective
- These materials were discovered from < **3 weeks of experimentation**

→ Automation enables rapid discovery; much more is possible!

- But even with automation, it's **not easy...**
 - Manual effort needed to refill chemicals, clean the consumables, and take a closer look at the most difficult XRD patterns
 - Several failure modes still need to be overcome

Acknowledgements

Persson group, UCB

UMN

Google