

Using thermodynamics to predict the first product formed in solid-state reactions

bartel.cems.umn.edu

Chemical Engineering & Materials Science

University of Minnesota

Nathan J. Szymanski

Inorganic materials are often made by solid-state synthesis

But experimental synthesis attempts often fail

- Precursors may react to form **unreactive intermediates**, restricting target growth
- If we could **predict** these reactions beforehand, we could **plan better syntheses**

Figure adapted from: A. Muira, C. J. Bartel, ..., G. Ceder, Adv. Mater. (2021).

Solid-state reactions tend to occur in pairs

Figure adapted from: A. Muira, C. J. Bartel, ..., G. Ceder, Adv. Mater. (2021).

Each pair can be described using a binary convex hull

Precursors

We can model the reaction thermodynamics (ΔG_i)...But does this tell us which product will form?

Diffusion and *nucleation* both dictate what product forms

lons need to **diffuse** to the interface

A product needs to **nucleate**

That product needs to grow *via* interdiffusion

Diffusion and *nucleation* both dictate what product forms

lons need to **diffuse** to the interface

A product needs to **nucleate**

That product needs to grow *via* interdiffusion

Nucleation primarily depends on ΔG and σ

Nucleation rate:

$$Q = \operatorname{A} \exp\left(-\frac{\Delta G^*}{k_B T}\right)$$

At some point, ΔG should dominate the initial product

If the difference between ΔG_1 and ΔG_2 is sufficiently large, it outweighs any difference between σ_1 and σ_2

$$\ln(\boldsymbol{Q}_1/\boldsymbol{Q}_2) = \frac{16\pi}{3n^2k_BT} \left(\frac{(\boldsymbol{\sigma}_1)^3}{(\Delta G_1)^2} - \frac{(\boldsymbol{\sigma}_2)^3}{(\Delta G_2)^2} \right) \xrightarrow{\text{Surface energy}} \text{Bulk reaction energy}$$

eering

& Materials Science

At some point, ΔG should dominate the initial product

How large is "sufficiently large"

If the difference between ΔG_1 and ΔG_2 is **sufficiently large**, it outweighs any difference between σ_1 and σ_2

$$\ln(\boldsymbol{Q_1}/\boldsymbol{Q_2}) = \frac{16\pi}{3n^2k_BT} \left(\frac{(\sigma_1)^3}{(\Delta G_1)^2} - \frac{(\sigma_2)^3}{(\Delta G_2)^2} \right) \xrightarrow{\text{Surface energy}} \text{Bulk reaction energy}$$

In situ X-ray diffraction (XRD) for experimental calibration

We took alkali (A) precursors:

 Li_2CO_3 , LiOH, Li_2O , NaNO₃, ...

Mixed them with **metal (M) precursors**: MnO, Mn_3O_4 , MnO_2 , Cr_2O_3 , ...

In a **1:1 ratio of A:M** for each sample, which was then **heated to 600** °**C** while XRD scans were performed.

Outcomes show a regime of thermodynamic (ΔG) control

Outcomes show a regime of thermodynamic (ΔG) control

An example: precursors influence the first Li-Nb-O product

Case 1:

Strong thermodynamic preference for **Li₃NbO₄** allows it to form first

Case 2:

Weak thermodynamic preference leads to the formation of **LiNbO₃**, which matches the overall sample stoichiometry of 1:1 Li:Nb

An example: precursors influence the first Li-Nb-O product

Case 1:

Strong thermodynamic preference for **Li₃NbO₄** allows it to form first

Case 2:

Weak thermodynamic preference leads to the formation of **LiNbO₃**, which matches the overall sample stoichiometry of 1:1 Li:Nb

15% of all pairwise reactions

in the Materials Project fall above the proposed threshold of 60 meV/atom, and therefore have outcomes that *may* be predictable using DFT

These predictions can inform synthesis planning

Our "training" set

Our "test" set

There is likely to be some **chemistry-dependence** of the proposed threshold

More work is needed on this front! Collaboration between exp and theory is key

Acknowledgements

