

The role of computation in materials synthesis and characterization

Nathan Szymanski

bartel.cems.umn.edu

Chemical Engineering & Materials Science

UNIVERSITY OF MINNESOTA

Research Seminar for Faculty Search 2025

Inorganic crystalline materials

Innovation is driven by materials with "just the right" properties

LiCoO₂ as a Li-ion cathode:

- Li can be reversibly (de)intercalated
- Co^{3+/4+} redox occurs at high voltage

Innovation is driven by materials with "just the right" properties

$\ln_{2-x}Sn_{x}O_{3}$ as a transparent conductor:

- High transparency to visible light
- Good electrical conductivity

LiCoO₂ as a Li-ion cathode:

• Li can be reversibly (de)intercalated

• Co^{3+/4+} redox occurs at high voltage

Innovation is driven by materials with "just the right" properties

 $ln_{2-x}Sn_{x}O_{3}$ as a transparent conductor:

- High transparency to visible light
- Good electrical conductivity

LiCoO₂ as a Li-ion cathode:

- Li can be reversibly (de)intercalated
- Co^{3+/4+} redox occurs at high voltage

$YBa_2Cu_3O_{7-x}$ as a high- T_c superconductor:

- Superconductivity across CuO₂ planes
- Good tolerance to oxygen vacancies (x)

Computations can assist in designing new materials

Is the material **stable?** Does it have the properties we want?

NOVEL MATERIALS DISCOVERY

There has been explosive growth in predicted materials

There has been explosive growth in predicted materials

Only some of these materials are thermodynamically stable

The number of stable materials is growing fast

SCIENCE ADVANCES | RESEARCH ARTICLE

MATERIALS SCIENCE

Wide-ranging predictions of new stable compounds powered by recommendation engines

Sean D. Griesemer^{1,2}, Bianca Baldassarri¹, Ruijie Zhu¹, Jiahong Shen¹, Koushik Pal^{1,3}, Cheol Woo Park^{1,4}, Chris Wolverton¹*

+60k predictions of stable materials!

Synthesizing predicted materials remains challenging

So how do we synthesize these compounds?

& Materials Science

Synthesizing predicted materials remains challenging

& Materials Science

Characterization is a long and expertise-driven process

Computational tools for synthesis and characterization

DFT for synthesis planning

AI for characterization

Integrate these two approaches < for closed-loop experimental optimization</p>

Computational tools for synthesis and characterization

DFT for synthesis planning

1) What can we learn from computed thermodynamics?

2) Using what we've learned: how can we design synthesis procedures?

$$G(T,P) = E + PV - TS$$

Scale of E_f is usually a few eV/atom

Kirklin et al., npj Computational Materials (2015).

We can safely neglect this term under ambient pressure

***Schwalbe-Koda** *et al.*, arXiv (2024). *Bartel *et al.*, Nature Communications (2018).

8/42

Using G(T) to make computational phase diagrams

Using G(T) to make computational phase diagrams

Computed phase diagrams don't always tell the whole story

Desired reaction: $3 \text{ Al} + \text{Fe} \rightarrow \text{Al}_3 \text{Fe} (\Delta G_0 = -199 \text{ meV/atom})$

Actual reactions: Al + Fe \rightarrow AlFe ($\Delta G_1 = -327 \text{ meV/atom}$)

AlFe + 2 Al \rightarrow Al₃Fe ($\Delta G_2 = -83 \text{ meV/atom}$)

Computed phase diagrams don't always tell the whole story

Can we predict this initial reaction from the phase diagram alone?

Desired reaction: 3 Al + Fe \rightarrow Al₃Fe ($\Delta G_0 = -199$ meV/atom)

Actual reactions: Al + Fe \rightarrow AlFe ($\Delta G_1 = -327 \text{ meV/atom}$)

AlFe + 2 Al \rightarrow Al₃Fe ($\Delta G_2 = -83$ meV/atom)

Reactions are inherently dictated by kinetics

That product needs to grow *via* interdiffusion

A product needs to **nucleate**

Reactions are inherently dictated by kinetics

That product needs to grow *via* interdiffusion

A product needs to **nucleate**

Nucleation primarily depends on ΔG and σ

Nucleation rate:

$$Q = \mathrm{A} \exp\left(-\frac{\Delta G^*}{k_{\mathrm{B}}T}\right)$$

Can we use $\triangle G$ **to predict which phase will nucleate first?**

$$\ln(\boldsymbol{Q_1}/\boldsymbol{Q_2}) = \frac{16\pi}{3n^2k_BT} \left(\frac{(\boldsymbol{\sigma_1})^3}{(\Delta G_1)^2} - \frac{(\boldsymbol{\sigma_2})^3}{(\Delta G_2)^2}\right)$$

Surface energy Bulk reaction energy

Can we use $\triangle G$ **to predict which phase will nucleate first?**

Hypothesis:

If the difference between ΔG_1 and ΔG_2 is sufficiently large, it outweighs any difference between σ_1 and σ_2

$$\ln(\boldsymbol{Q_1}/\boldsymbol{Q_2}) = \frac{16\pi}{3n^2k_BT} \left(\frac{(\boldsymbol{\sigma_1})^3}{(\Delta G_1)^2} - \frac{(\boldsymbol{\sigma_2})^3}{(\Delta G_2)^2}\right)$$

Surface energy Bulk reaction energy

Can we use $\triangle G$ **to predict which phase will nucleate first?**

How large is "sufficiently large"

If the difference between ΔG_1 and ΔG_2 is **sufficiently large**, it outweighs any difference between σ_1 and σ_2

$$\ln(\mathbf{Q_1}/\mathbf{Q_2}) = \frac{16\pi}{3n^2k_BT} \left(\frac{(\sigma_1)^3}{(\Delta G_1)^2} - \frac{(\sigma_2)^3}{(\Delta G_2)^2}\right)$$

Surface energy Bulk reaction energy

Quantifying the limit using *in-situ* X-ray diffraction (XRD)

We took alkali (A) precursors:

Li₂CO₃, LiOH, Li₂O, NaNO₃, ...

Mixed them with **metal (M) precursors**: MnO, Mn_3O_4 , MnO_2 , Cr_2O_3 , ...

In a **1:1 ratio of A:M** for each sample, which was then **heated to 600** °**C** while XRD scans were performed.

Szymanski *et al.*, Science Advances (2024).

Outcomes show a regime of thermodynamic (ΔG) control

Szymanski et al., Science Advances (2024).

But most reactions are not in a thermodynamic regime

But most reactions are not in a thermodynamic regime

Only **15% of the binary convex hulls** in the Materials Project fall above the proposed threshold of 60 meV/atom

How to deal with the remaining 85% of reactions?

Recall the two factors we neglected:

Diffusion

Option 1:

Simulate these processes directly

Existing computational models of kinetics are too costly

Option 2:

Integrate our starting predictions (based on ΔG) with experiment and update them accordingly

Computational tools for synthesis and characterization

DFT for synthesis planning

) What can we learn from computed thermodynamics?

2) Using what we've learned: how can we design synthesis procedures?

Combining predictions with experiments to optimize synthesis

Autonomous Reaction Route Optimization With Solid-State Synthesis

Given a target material, find the **best precursors and conditions**

How to deal with mixtures of > 2 phases?

Figure adapted from: A. Miura *et al.*, Advanced Materials (2021).

Combining predictions with experiments to optimize synthesis

Autonomous Reaction Route Optimization With Solid-State Synthesis

Given a target material, find the **best precursors and conditions**

Figure adapted from: A. Miura et al., Advanced Materials (2021).

Combining predictions with experiments to optimize synthesis

Figure adapted from: A. Miura et al., Advanced Materials (2021).

Computed thermodynamics (ΔG) guide the optimization

Computed thermodynamics (ΔG) guide the optimization

21/42

Predict reaction outcomes of new precursor sets Perform experiments using suggested precursors

Traditional synthesis of YBCO:

4 BaCO₃ + Y_2O_3 + 6 CuO @ **950** °C for > 12 h With intermittent regrinding and reheating

Common impurities: BaCuO₂ and Y₂BaCuO₅

Objective: Find synthesis routes that yield ∼pure YBCO in 4 h at ≤ 900 °C

N. J. Szymanski et al., Nature Communications (2024).

47.8% $BaCO_3$ 9.7% $BaCuO_2$ 27.1% CuO 6.5% Y_2BaCuO_5 8.9% YBCO \longrightarrow Low target yield

47.8% BaCO₃ – 9.7% BaCuO₂ 27.1% CuO 6.5% Y₂BaCuO₅ 8.9% YBCO BaCO₃ is slow to react before its decomposition (> 1000 °C)

Traditional precursors lead to many impurities after 4 h

ARROWS succeeds in identifying fast synthesis routes

The optimized precursors lead to much higher purity

 $Ba_2Cu_3O_6$ and Y_2O_3 react directly to form YBCO at $T \le 900$ °C

ARROWS succeeds in identifying fast synthesis routes

ARROWS outperforms black-box optimization

In **87 iterations**, ARROWS found **10 synthesis routes** that produce YBCO with > **95% yield in** ≤ **4 h**

For comparison:

Bayesian optimization and genetic algorithms required> 160 iterations

Computational tools for synthesis and characterization

With automated decision making, analysis of characterization data becomes the bottleneck

AI for characterization

Powder X-ray diffraction (XRD) → what phases are present

Simulating XRD is easy, but *solving* XRD is hard

- Experimental artifacts modify peaks
- Multi-phase mixtures are common
- The pattern may not be unique

Simulating XRD is easy, but *solving* XRD is hard

- **Experimental artifacts** modify peaks
- Multi-phase mixtures are common

These can be **simulated** and used to train ML models

• The pattern **may not be unique** → ML can be **probabilistic**

Neural networks are trained on simulated XRD patterns

N. J. Szymanski et al., Chemistry of Materials (2021).

ML outperforms traditional methods, but limitations persist

Mixtures are difficult to characterize reliably

Simulated test data:

4k patterns augmented with exp artifacts

Experimental test data:

80 patterns augmented with exp artifacts

(Li-Mn-Ti-O-F)

ML outperforms traditional methods, but limitations persist

Can we *adaptively* control XRD to focus on impurities?

Adaptive XRD workflow: initial scan is fast and noisy

Adaptive XRD workflow: CNN predicts likely phases

Adaptive XRD workflow: CAMs highlight areas of interest

- (L) N

Adaptive XRD workflow: CAMs highlight areas of interest

Model predicts **dog**

Model predicts cat

Example from Keras tutorials

Adaptive XRD workflow: slower rescans clarify key features

N. J. Szymanski *et al.*, npj Computational Materials (2023).

Adaptive scans more effectively detect secondary phases

However, impurity detection remains challenging when there are more phases to choose from

- XRD performed on **120 mixtures** in \bullet the Li-La-Zr-O space, prepared with varied impurity amounts
- Adaptive scans show improved accuracy in impurity detection

Computational tools for synthesis and characterization

DFT for synthesis planning

AI for characterization

Computational tools for synthesis and characterization

Self-driving labs are being developed around the globe

Automated solution-based synthesis

Burger *et al.*, Nature (2020).

MacLeod *et al.*, Science Advances (2020).

37/42

Automated solid-state synthesis for inorganic materials

N. J. Szymanski et al., Nature (2023).

38/42

Y. Fei et al., Digital Discovery (2024).

Challenge #1: most experimental iterations fail

N. J. Szymanski *et al.*, 39/42

Challenge #2: materials characterization remains difficult

40/42

Challenge #2: materials characterization remains difficult

Future: additional characterization, with a focus on in-situ

High-throughput *in-situ* XRD

ML for complementary techniques

Challenge #1: most experimental iterations fail

How to overcome the low success rate of thermodynamic-based synthesis design?

42/42

Future: directly simulate the kinetics of solid-state reactions

Future: directly simulate the kinetics of solid-state reactions

Acknowledgements

SAMSUNG

umicore

