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Innovation is driven by materials with “just the right” properties CEMS
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Innovation is driven by materials with “just the right” properties CEMS

Chemical En \gineer mg

& Materials Scienc

In,_,Sn, O, as a transparent conductor:

» High transparency to visible light
« Good electrical conductivity




Innovation is driven by materials with “just the right” properties CEMS
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YBa,Cu;0,_, as a high-T_ superconductor:

« Superconductivity across CuO, planes
» Good tolerance to oxygen vacancies (x)




Computations can assist in designing new materials CEMS
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Density functional - Provides an answer
theory (DFT) to the questions:
.. . Internal energy | Is the material stable?
» Electronic properties > Does it have the
o ‘ ®© Response functions properties we want?

OQMD

The Open Quantum
Materials Database

Slexandria

MATERIALS
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NOVEL MATERIALS DISCOVERY
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There has been explosive growth in predicted materials CEMS
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There has been explosive growth in predicted materials CEMS
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Only some of these materials are thermodynamically stable CEMS
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Unstable or
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The number of stable materials is growing fast CEMS
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SCIENCE ADVANCES | RESEARCH ARTICLE

Unstable or

MATERIALS SCIENCE

Wide-ranging predictions of new stable compounds
powered by recommendation engines
l‘l,3

Sean D. Griesemer'"?, Bianca Baldassarri', Ruijie Zhu', Jiahong Shen', Koushik Pal'?,
Cheol Woo Park'#, Chris Wolverton'*

metastable

SN Newly
stable

+60k predictions of stable materials!




Synthesizing predicted materials remains challenging CEMS
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So how do we synthesize these compounds?




Synthesizing predicted materials remains challenging CEMS

Chem ulE 1| 1eer 13
S & Mate

Solid-state
/) Trial and
R’ error
What precursors and conditions to use? ~ The wrong answer may lead to:
. 9 @ No target formed Impurities
E - Loss of necessary elements
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The “cook-and-look” process
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Computational tools for synthesis and characterization CEMS
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— DFT for synthesis planning Al for characterization ]

Integrate these two approaches <
for closed-loop experimental optimization



Computational tools for synthesis and characterization CEMS
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1) What can we learn from
computed thermodynamics?
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DFT for synthesis planning



Ab-initio calculation of the Gibbs free energy (G) CEMS
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G(T,P)=E+PV—TS



Ab-initio calculation of the Gibbs free energy (G) CEMS
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» G(T,P)=E+PV—TS

|

Internal energy (E) from DFT

Energy scale
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Scale of E is usually a few eV/atom

Kirklin et al., npj Computational Materials (2015).



Ab-initio calculation of the Gibbs free energy (G) CEMS

Energy scale
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» G(T,P)=E+PV—TS

|

Work term associated with volume change

PV

-+

For most solids:
PAV < 0.01 eV/atom

We can safely neglect this term under ambient pressure




Ab-initio calculation of the Gibbs free energy (G) CEMS
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» G(T,P)=E+PV—TS

|

Svib + Selec + Sconfig

Energy scale

¥




Ab-initio calculation of the Gibbs free energy (G) CEMS
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» G(TP)=E+PV-TS

<
8 |
% Svib
E Svib
L Vibrational entropy
¥ has a large effect at
high temperature
(> 0.1 eV/atom)
Phonons
or ML"

*Schwalbe-Koda et al,, arXiv (2024).
*Bartel et al,, Nature Communications (2018).
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Ab-initio calculation of the Gibbs free energy (G) CEMS
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G(T,P)=E+PV—TS

S elec l

Selec

Energy scale

Electronic entropy _—

N(E)
has a small effect on
most solids Ep
(~ 0.01 eV/atom)

Density
of states




Ab-initio calculation of the Gibbs free energy (G) CEMS

G(T,P)=E+PV—-TS

Sconfig l
5 config

Configurational entropy OO O
has a large effecton ©O 8
disordered materials 000

Energy scale
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(~0.1eV/atom) oo 000

S = —NkBZx,; In x;
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Statistical
thermo.




Ab-initio calculation of the Gibbs free energy (G) CEMS
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G(T,P)=E+PV—TS

Y

S config

Energy scale

Y G(T) = F — TSVib + NkBTE Xi lnxi
1




Using G(T) to make computational phase diagrams CEMS
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Using G(T) to make computational phase diagrams CEMS
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Phase diagrams can
also be extended to
higher dimensions

Li

Al



Computed phase diagrams don’t always tell the whole story CEMS

Al

O

AG

AG,

(")

Al;Fe

Fe

AlFe
3
AlFe

Al

Desired reaction: 3 Al 4+ Fe — Al;Fe (AG,

C _

IE)
&H

AG

AlFe
= —199 meV/atom)

Actual reactions: Al + Fe — AlFe (AG; = —327 meV/atom)
AlFe + 2 Al - Al;Fe (AG, = —83 meV/atom)

]

10/42



Computed phase diagrams don’t always tell the whole story CEMS

Che IE)
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AG

O O—» Can we predict
Al | Fe this initial reaction
from the phase
O diagram alone?
o
AlFe

Actual reactions: Al + Fe — AlFe (AG; = —327 meV/atom)



Reactions are inherently dictated by kinetics CEMS
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lons need to diffuse to the interface A product needs to nucleate

e —> «— 0
e — «— 0
®—> «~—0
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That product
needs to grow
via interdiffusion




Reactions are inherently dictated by kinetics CEMS
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A product needs to nucleate




Nucleation primarily depends on AG and o CEMS
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Classical nucleation theory

A

Nucleation rate:

R AG*
C=Aexp| Ty T

surface free
energy

AGg AG™: nucleation

barrier

%)
<] > T . .
Nucleation barrier:
AGy
bulk free AGtotal .
energy AGH= 16m
3(nAG)?

. S Atomic density Bulk reaction energy
Particle growth
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Can we use AG to predict which phase will nucleate first? CEMS
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In(Q1/Q2) =



Can we use AG to predict which phase will nucleate first? CEMS
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Hypothesis:
T If the difference between AG, and AG,
O is sufficiently large, it outweighs any
difference between g, and g,
AG, O

I AG

1

(01)°  (0,)°
3n2kgT \(AG)?* (AG,)? Bulk reaction energy

In(Q1/Q2) =



Can we use AG to predict which phase will nucleate first? CEMS
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How large is
“sufficiently large”

If the difference between AG, and AG,
is sufficiently large, it outweighs any
difference between g, and g,



Quantifying the limit using in-situ X-ray diffraction (XRD) CEMS
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. Eg;_’f;gg_g}{f Q Given a pair of solid reactants,
QU what is the first product that
forms during heating?

Synchrotron
X-rays " e

Temperature

Szymanski et al.,, Science Advances (2024).
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We used 37 ternary metal oxides (A-M-0) as a test case CEMS
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&H

We took alkali (A) precursors:

Li,CO,, LiOH, Li,O, NaNO,, ...

Mixed them with metal (M) precursors:

MnO, Mn;0,, MnO,, Cr,0O;, ...

In a 1:1 ratio of A:M for each sample,
which was then heated to 600 °C while
XRD scans were performed.

Szymanski et al.,, Science Advances (2024).



Outcomes show a regime of thermodynamic (AG) control CEMS
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Szymanski et al.,, Science Advances (2024).



Outcomes show a regime of thermodynamic (AG) control
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Outcomes show a regime of thermodynamic (AG) control

CEMS
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Szymanski et al.,, Science Advances (2024).



Outcomes show a regime of thermodynamic (AG) control CEMS
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Outcomes show a regime of thermodynamic (AG) control CEMS
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But most reactions are not in a thermodynamic regime CEMS
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60 meV/atom

Kinetic | Thermodynamic
L | ! ~700k convex hulls
X 105 | (@ O O—>
.
N A
-§ o] | Project { |AG.- AGz|
2

0 50 100 150 200
|AG1 - AG>| (meV/atom)

Szymanski et al.,, Science Advances (2024).
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But most reactions are not in a thermodynamic regime CEMS
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60 meV/atom

Kinetic | Thermodynamic

L Only 15% of the binary convex hulls
X 10’ i in the Materials Project fall above the
© proposed threshold of 60 meV/atom
3 ' Materials

-g T8, Project

-

Z

0 50 100 150 200

|AG1 - AG>| (meV/atom)
Szymanski et al.,, Science Advances (2024).
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How to deal with the remaining 85% of reactions? CEMS
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Recall the two factors we neglected: R B AGH — 16103
o—> — ~ 3(nAG)?
Diffusion e¢— PR Surface energy
Option 1: Option 2:
Simulate these processes directly Integrate our starting predictions
©00000000000000000 00000000000 (based on AG) with experlment
cesssed Defects Doee 8. vennneeecs and update them accordingly

0000000000000000000000 0.
©0000'0000000:000000000 Nucleation

0000000007 0N000 . 000. 0000000

. - P:70000000 90000000000 g
lefUSlOn:ooooooooo QO - @

000000000

Existing computational models of
kinetics are too costly

—

18/42




Computational tools for synthesis and characterization CEMS
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2) Using what we’ve learned:
how can we design synthesis

procedures?
DFT for synthesis planning

]

19/42



Combining predictions with experiments to optimize synthesis CEMS
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3
Vg ARROWS ?  Given a target material, find the

Autonomous Reaction Route Optimization best precursors and conditions
With Solid-State Synthesis

How to deal with mixtures of > 2 phases?

Figure adapted from: A. Miura et al., Advanced Materials (2021).



Combining predictions with experiments to optimize synthesis CEMS
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3
bog ARROWS ?  Given a target material, find the

Autonomous Reaction Route Optimization best precursors and conditions
With Solid-State Synthesis

A+ 2B + 3C - AB,C;

Figure adapted from: A. Miura et al., Advanced Materials (2021).



Combining predictions with experiments to optimize synthesis CEMS
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3
bog ARROWS ?  Given a target material, find the

Autonomous Reaction Route Optimization best precursors and conditions
With Solid-State Synthesis

1A A + 2B + 3C - AB,C,

Each interface is

described by a W\BK/ A,B|BC,

binary convex hull

Figure adapted from: A. Miura et al., Advanced Materials (2021).
.\




Computed thermodynamics (AG) guide the optimization CEMS
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An ideal reaction pathway

A has large AG at the
5 S target-forming step
@ —
-
@ — T
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m 1 AG
L DFT energetics frget |
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Reaction Progress



Computed thermodynamics (AG) guide the optimization CEMS
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{ But how do we know what these pathways will be? J
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ARROWS learns the reaction pathways CEMS
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ARROWS learns the reaction pathways CEMS
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ARROWS learns the reaction pathways CEMS
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ARROWS learns the reaction pathways CEMS
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Finding improved synthesis routes for a high-T_ superconductor CEMS
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YBa,Cuz;0-_,
(YBCO)

Traditional synthesis of YBCO:
4 BaCO; + Y,05; + 6 CuO @ 950 °C for > 12 h
With intermittent regrinding and reheating

Common impurities: BaCuO, and Y,BaCuO:

3 . crae
»»——ARROWS > Objective: |
Autonomous Reaction Route Optimization Find synthe5|s. routes that yield

With Solid-State Synthesis ~pure YBCO in 4 h at <900 °C

N. J. Szymanski et al,, Nature Communications (2024).



Traditional precursors lead to many impurities after 4 h CEMS
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V0, + 4 BaCO3 + 6 CuO (900 °C)

k] 1 AR M T ] 47.8% Baco,
' . Obcemeq | 9:7% BaCuO,
okl — Calsceurl\;fed 27.1% CuO
(o)
 Oifference | 6:3% Y;BaCuOs

8.9% YBCO —— Low target yield
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Traditional precursors lead to many impurities after 4 h CEMS
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Y,0; + 4 BaCO; + 6 CuO (900 °C)

Gic] * T Wy T [y 0F w0 g TS 47.8% BaCO, —— BaCO,; is slow to
. Observed 9.7% BaCuO, react befm:e. its
- —— Calculated 27.1% CuO decomposition
—— Difference 6.5% Y,BaCuO; (> 1000 °C)
8.9% YBCO

N
~

Intensity (counts)
S
~

o

20 40 60 80 100
206



Traditional precursors lead to many impurities after 4 h CEMS
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Y,0; + 4 BaCO; + 6 CuO (900 °C) When BaCO;

~ 8kc] P By S S IR P g N 47.8% BaCO; reacts, it forms

b B T 0T 9.7% BaCuO, > BaCuO, and

C * QObserved

3 6k - S 27.1% CuO subsequently

o " 6.5% Y,BaCuO, —— Y,BaCuO;

5 4K 8.9% YBCO

= These are

= 2k impurities we'd

(= like to avoid

o

20 40 60 80 100
206



ARROWS succeeds in identifying fast synthesis routes CEMS

Experimental iterations

All optima
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0 40 80 120 160
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In 87 iterations, ARROWS
found 10 synthesis routes
that produce YBCO with
highyieldin<4h




The optimized precursors lead to much higher purity CEMS
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Y,0, + 2 Ba,Cu,0; (900 °C)

12k- | [ N A N | I N U A A R (A | ]
Substantially
Sk - improved YBCO
purity
0 ~ %h N
200 40 60 80 100

20
Ba,Cu;0, and Y,O; react directly to form YBCO at T < 900 °C



ARROWS succeeds in identifying fast synthesis routes CEMS

Experimental iterations

All optima
g 10- e
(0]
)
£ 8
C
o
Y 6
=
;.
O
S5 2
V)
0 . ; , .
0 40 80 120 160
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& Mate

In 87 iterations, ARROWS
found 10 synthesis routes
that produce YBCO with
>95% yieldin <4 h

Is ARROWS efficient?




ARROWS outperforms black-box optimization CEMS
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Y 10- AIIoptlma ----- In 87 iterations, ARROWS
E found 10 synthesis routes
= 8] that produce YBCO with
> 6 > 95% yieldin <4 h
=
@, For comparison:
g _ Bayesian Baye5|.an optl.mlzatlon apd
= 2 _ Genetic genetic algorithms required

0 | | | | > 160 iterations

0 40 80 120 160

Experimental iterations



Computational tools for synthesis and characterization CEMS
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With automated decision making,

analysis of characterization data
becomes the bottleneck

4 \@ Y, g \_@_ .,@' @“
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Al for characterization

Powder X-ray diffraction (XRD)
- what phases are present



Simulating XRD is easy, but solving XRD is hard CEMS
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Fhkl — Zf:]_e—ZTCl(hxj+kyj+le)
j=1 l

10 20 30 40 50 60 70 80

A 20

How to go from XRD to structure?

- Experimental artifacts modify peaks
* Multi-phase mixtures are common

* The pattern may not be unique



Simulating XRD is easy, but solving XRD is hard CEMS
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Av "
Al L

10 20 30 40 50 60 70 80

———————————————————————————————————————————————————————————

 Experimental artifacts modify peaks ‘J' These can be simulated and
» Multi-phase mixtures are common used to train ML models

* The pattern may not be unique » ML can be probabilistic



Neural networks are trained on simulated XRD patterns CEMS
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Known structures Simulated patterns Convolutional neural networks

FIZ Karlsruhe

Materials Project / \ \

Shifts  Intensity = Broad
in 20  changes peaks

Data augmentation
from strain, texture, and
poor crystallinity

N. J. Szymanski et al., Chemistry of Materials (2021).
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ML outperforms traditional methods, but limitations persist CEMS
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i Accuracy relative to traditional methods (JADE)

Mixtures are difficult

to characterize reliably
80+

Simulated test data:

4k patterns augmented
with exp artifacts

60 -

40 - Experimental test data:

Accuracy (%)

80 patterns augmented
with exp artifacts

Neural networks

©
-
O
=
O
(4]
—
—

20

(Li-Mn-Ti-O-F)
1-phase 2-phase 3-phase



ML outperforms traditional methods, but limitations persist CEMS
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i Accuracy relative to traditional methods (JADE)

Impurity phases
with low weight
fractions are
challenging to
detect

80

60 -

------------------J

40-

Accuracy (%)
Neural networks

Traditional

20

1-phase 2-phase 3-phase < 40% < 20%




Can we adaptively control XRD to focus on impurities? CEMS
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These features need
to be clarified '
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260

What impurity
phases are present?

toward region of
interest




Adaptive XRD workflow: initial scan is fast and noisy CEMS
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Fast initial scan

What phases are in
the sample?

Iexp

10 20 30 40 50 60
26

N. J. Szymanski et al., npj Computational Materials (2023).



Adaptive XRD workflow: CNN predicts likely phases CEMS
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Fast initial scan |dentify probable phases
o What phases are in o (1 Ti.O Li TiO
X e 45 2 3
o the sample? —| S
' . . , ( ] AAA -
10 20 30 40 50 60 10 30 40 50 60
260 20

N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive XRD workflow: CAMs highlight areas of interest

CEMS
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Iexp

Fast initial scan

What phases are in
the sample?

10 20 30 40 50 60
26

Icalc

Identify probable phases

AL|4T|SO12 Li.TiO,
AAA -

10

30 40 50
26

60

v

CAM

Calculate CAM of each phase

Difference
Threshold

20 30 40 50

60

N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive XRD workflow: CAMs highlight areas of interest CEMS
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N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive XRD workflow: slower rescans clarify key features CEMS
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N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive scans more effectively detect secondary phases CEMS
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Computational tools for synthesis and characterization CEMS
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Computational tools for synthesis and characterization CEMS
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Self-driving labs are being developed around the globe CEMS
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& Materials Science
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MaclLeod et al., Science Advances (2020). Burger et al., Nature (2020).
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Automated solid-state synthesis for inorganic materials CEMS
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From March 2023
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N. J. Szymanski et al., Nature (2023). Y. Fei et al., Digital Discovery (2024).




Challenge #1: most experimental iterations fail CEMS
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37% success 2023 Q1 |
<< |

per recipe 2023 Q2

2023 Q3
130/355 2023 Q4
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1 AG With Solid-State Synthesis

N. J. Szymanski et al., Nature (2023).



Challenge #2: materials characterization remains difficult CEMS
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Leeman et al., PRX Energy (2024).
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Challenge #2: materials characterization remains difficult CEMS
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Adaptive XRD can help with impurity
detection, but its accuracy still decreases
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Future: additional characterization,

High-throughput in-situ XRD
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Challenge #1: most experimental iterations fail CEMS

37% success
per recipe
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How to overcome the low success
rate of thermodynamic-based
synthesis design?
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Future: directly simulate the kinetics of solid-state reactions CEMS
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Future: directly simulate the kinetics of solid-state reactions CEMS
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System complexity

Accuracy Timescale

Leverage machine learning
to bridge this gap in the
simulation of kinetics
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