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Innovation is driven by materials with “just the right” properties

Li

Co

LiCoO2 as a Li-ion cathode:

• Li can be reversibly (de)intercalated

• Co3+/4+ redox occurs at high voltage

In2-xSnxO3-2x as a transparent conductor:

• High transparency to visible light

• Good electrical conductivity

YBa2Cu3O6+x as a high-Tc superconductor:

• Superconductivity across CuO2 plans

• Good tolerance to oxygen vacancies (x)

ℎ𝜐
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Innovation is driven by materials with “just the right” properties

Li

Co

LiCoO2 as a Li-ion cathode:

• Li can be reversibly (de)intercalated

• Co3+/4+ redox occurs at high voltage

• High transparency to visible light

• Good electrical conductivity

YBa2Cu3O7-x as a high-Tc superconductor:

• Superconductivity across CuO2 planes

• Good tolerance to oxygen vacancies (x)

ℎ𝜐
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Computations can assist in designing new materials 

Density functional 

theory (DFT)

Internal energy

Electronic properties

Response functions

Provides an answer 

to the questions:

Is the material stable?

Does it have the 

properties we want?
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There has been explosive growth in predicted materials

300 thousand 

experimentally 

synthesized



3/42

There has been explosive growth in predicted materials

1.4 million 

computed

300 thousand 

experimentally 

synthesized
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Only some of these materials are thermodynamically stable

Stable

Unstable or 

metastable

From 

MP
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The number of stable materials is growing fast

Stable

Unstable or 

metastable

+60k predictions of stable materials!

Newly 

stable
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Synthesizing predicted materials remains challenging

Solid-state

Solution

Thin film

So how do we synthesize these compounds?

Stable

Unstable or 

metastable

Newly 

stable



Solid-state

Solution

Thin film

Stable

Unstable or 

metastable

Newly 

stable
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Synthesizing predicted materials remains challenging

What precursors and conditions to use? The wrong answer may lead to:

No target formed Impurities

Loss of necessary elements

Trial and 

error
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Characterization is a long and expertise-driven process

What precursors and conditions to use? The wrong answer may lead to:

No target formed Impurities

Loss of necessary elements

Trial and 

error

The “cook-and-look” process

Synthesis 

attempt

Characterization 

and analysis

2θ

In
te

n
si

ty
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Computational tools for synthesis and characterization

DFT for synthesis planning AI for characterization

Integrate these two approaches

for closed-loop experimental optimization
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Computational tools for synthesis and characterization

1) What can we learn from 

computed thermodynamics?

2) Using what we’ve learned: 

how can we design synthesis 

procedures?
DFT for synthesis planning
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Ab-initio calculation of the Gibbs free energy (𝑮)

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺
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Ab-initio calculation of the Gibbs free energy (𝑮)

Internal energy (𝑬) from DFT

Kirklin et al., npj Computational Materials (2015).

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺

Scale of 𝑬𝒇 is usually a few eV/atom

E
n

e
rg

y
 s

ca
le

𝑬𝒇
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Ab-initio calculation of the Gibbs free energy (𝑮)

Work term associated with volume change

We can safely neglect this term under ambient pressure

For most solids:

𝑷∆𝑽 ≤ 𝟎. 𝟎𝟏 eV/atom

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺

E
n

e
rg

y
 s

ca
le

𝑬𝒇

𝑷𝑽
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Ab-initio calculation of the Gibbs free energy (𝑮)

𝑺𝐯𝐢𝐛 + 𝑺𝐞𝐥𝐞𝐜 + 𝑺𝐜𝐨𝐧𝐟𝐢𝐠

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺
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Ab-initio calculation of the Gibbs free energy (𝑮)

𝑺𝐯𝐢𝐛 + 𝑺𝐞𝐥𝐞𝐜 + 𝑺𝐜𝐨𝐧𝐟𝐢𝐠

Phonons 

or ML*

*Bartel et al., Nature Communications (2018).

Vibrational entropy 

has a large effect at 

high temperature

(> 0.1 eV/atom)

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺

E
n

e
rg

y
 s

ca
le

𝑬𝒇

𝑺𝐯𝐢𝐛

𝑷𝑽

*Schwalbe-Koda et al., arXiv (2024).
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Ab-initio calculation of the Gibbs free energy (𝑮)

𝑺𝐯𝐢𝐛 + 𝑺𝐞𝐥𝐞𝐜 + 𝑺𝐜𝐨𝐧𝐟𝐢𝐠
Electronic entropy 

has a small effect on 

most solids

(~ 0.01 eV/atom)

𝑁(𝐸)

𝐸F

Density 

of states

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺

E
n

e
rg

y
 s

ca
le

𝑬𝒇

𝑺𝐞𝐥𝐞𝐜
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Ab-initio calculation of the Gibbs free energy (𝑮)

𝑺𝐯𝐢𝐛 + 𝑺𝐞𝐥𝐞𝐜 + 𝑺𝐜𝐨𝐧𝐟𝐢𝐠
Configurational entropy 

has a large effect on 

disordered materials

(~0.1 eV/atom)

Statistical 

thermo.
𝑆 = −𝑁𝑘B

𝑖

𝑥𝑖 ln 𝑥𝑖

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺

E
n

e
rg

y
 s

ca
le

𝑬𝒇

𝑺𝐞𝐥𝐞𝐜

𝑺𝐯𝐢𝐛
𝑺𝐜𝐨𝐧𝐟𝐢𝐠

𝑷𝑽
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Ab-initio calculation of the Gibbs free energy (𝑮)

𝑮 𝑻,𝑷 = 𝑬 + 𝑷𝑽 − 𝑻𝑺

E
n

e
rg

y
 s

ca
le

𝑬𝒇

𝑺𝐞𝐥𝐞𝐜

𝑺𝐯𝐢𝐛
𝑺𝐜𝐨𝐧𝐟𝐢𝐠

𝑷𝑽

𝑮 𝑻 = 𝑬 − 𝑻𝑺𝐯𝐢𝐛 +𝑵𝒌𝑩𝑻

𝒊

𝒙𝒊 𝒍𝒏 𝒙𝒊
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Using 𝑮(𝑻) to make computational phase diagrams

Al Fe

S

Al2S3

FeS

FeS2

AlFe3AlFeAl3Fe

𝑮

Al Fe

AlFe3

AlFe

Al3Fe

𝛽-AlFe3

Al3Fe2

Ground states = lowest 𝑮
at a given composition
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Using 𝑮(𝑻) to make computational phase diagrams

Al Fe

S

Al2S3

FeS

FeS2

AlFe3AlFeAl3Fe

Li

Al

Fe

S Phase diagrams can 

also be extended to 

higher dimensions
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Computed phase diagrams don’t always tell the whole story

𝑮

Al Fe

AlFe3

AlFe

Al3Fe

𝑮

Al

AlFe

Al3Fe

Desired reaction: 3 Al + Fe → Al3Fe (∆𝐺0 = −199 meV/atom)

Actual reactions: Al + Fe → AlFe (∆𝐺1 = −327 meV/atom)

AlFe + 2 Al → Al3Fe (∆𝐺2 = −83 meV/atom)

∆𝐺0 ∆𝐺2
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Computed phase diagrams don’t always tell the whole story

Desired reaction: 3 Al + Fe → Al3Fe (∆𝐺0 = −199 meV/atom)

Actual reactions: Al + Fe → AlFe (∆𝐺1 = −327 meV/atom)

AlFe + 2 Al → Al3Fe (∆𝐺2 = −83 meV/atom)

𝑮

Al Fe

AlFe3

AlFe

Al3Fe

Can we predict 

this initial reaction 

from the phase 

diagram alone?
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Reactions are inherently dictated by kinetics

Ions need to diffuse to the interface A product needs to nucleate

That product 

needs to grow 

via interdiffusion
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Reactions are inherently dictated by kinetics

Ions need to diffuse to the interface A product needs to nucleate

That product 

needs to grow 

via interdiffusion
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Nucleation primarily depends on ∆𝑮 and 𝝈

𝑄 = A exp −
∆𝐺∗

𝑘B𝑇

Bulk reaction energy

Surface energy

∆𝐺∗=
16𝜋𝜎3

3(𝑛∆𝐺)2

Nucleation barrier:

Nucleation rate:

Atomic density

Classical nucleation theory

Surface

stabilized
Bulk

stabilized

Large 

ΔG
rxn

 

Small

ΔG
rxn

 

Surface

stabilized
Bulk

stabilized

Large 

ΔG
rxn

 

Small

ΔG
rxn

 

Particle growth
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Can we use ∆𝑮 to predict which phase will nucleate first?

ln( Τ𝑸𝟏 𝑸𝟐) =
16𝜋

3𝑛2𝑘𝐵𝑇

𝜎1
3

∆𝐺1
2
−

𝜎2
3

∆𝐺2
2

Bulk reaction energy

Surface energy
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Can we use ∆𝑮 to predict which phase will nucleate first?

ln( Τ𝑸𝟏 𝑸𝟐) =
16𝜋

3𝑛2𝑘𝐵𝑇

𝜎1
3

∆𝐺1
2
−

𝜎2
3

∆𝐺2
2

Bulk reaction energy

Surface energy

If the difference between ΔG1 and ΔG2

is sufficiently large, it outweighs any 

difference between σ1 and σ2

Hypothesis:
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Can we use ∆𝑮 to predict which phase will nucleate first?

ln( Τ𝑸𝟏 𝑸𝟐) =
16𝜋

3𝑛2𝑘𝐵𝑇

𝜎1
3

∆𝐺1
2
−

𝜎2
3

∆𝐺2
2

Bulk reaction energy

Surface energy

If the difference between ΔG1 and ΔG2

is sufficiently large, it outweighs any 

difference between σ1 and σ2

How large is 

“sufficiently large”
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Quantifying the limit using in-situ X-ray diffraction (XRD)
Te

m
p

e
ra

tu
re

2θ

Given a pair of solid reactants, 

what is the first product that 

forms during heating?

Szymanski et al., Science Advances (2024).
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We used 37 ternary metal oxides (A-M-O) as a test case

A

M

We took alkali (A) precursors:

Li2CO3, LiOH, Li2O, NaNO3, …

Mixed them with metal (M) precursors:

MnO, Mn3O4, MnO2, Cr2O3, …

In a 1:1 ratio of A:M for each sample, 

which was then heated to 600 °C while 

XRD scans were performed.

Szymanski et al., Science Advances (2024).



16/42

Outcomes show a regime of thermodynamic (ΔG) control

Szymanski et al., Science Advances (2024).
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Outcomes show a regime of thermodynamic (ΔG) control

Szymanski et al., Science Advances (2024).
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Outcomes show a regime of thermodynamic (ΔG) control

Szymanski et al., Science Advances (2024).

Phase that formed 

has largest ∆𝑮

Phase that formed 

does not have 

largest ∆𝑮
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Outcomes show a regime of thermodynamic (ΔG) control

Szymanski et al., Science Advances (2024).
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Outcomes show a regime of thermodynamic (ΔG) control

60 meV/atom

First product is 

always max-ΔG

Szymanski et al., Science Advances (2024).
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But most reactions are not in a thermodynamic regime

60 meV/atom

Szymanski et al., Science Advances (2024).

~700k convex hulls
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But most reactions are not in a thermodynamic regime

60 meV/atom

Only 15% of the binary convex hulls

in the Materials Project fall above the 

proposed threshold of 60 meV/atom

Szymanski et al., Science Advances (2024).
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How to deal with the remaining 85% of reactions?

Recall the two factors we neglected:
∆𝐺∗=

16𝜋𝝈3

3(𝑛∆𝐺)2

Diffusion Surface energy

Option 1:

Simulate these processes directly

Option 2:

Integrate our starting predictions 

(based on ∆𝐺) with experiment 

and update them accordingly

Existing computational models of 

kinetics are too costly
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Computational tools for synthesis and characterization

1) What can we learn from 

computed thermodynamics?

2) Using what we’ve learned: 

how can we design synthesis 

procedures?
DFT for synthesis planning
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Combining predictions with experiments to optimize synthesis

Given a target material, find the 

best precursors and conditions

How to deal with mixtures of > 2 phases?

Figure adapted from: A. Miura et al., Advanced Materials (2021).
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Combining predictions with experiments to optimize synthesis

Given a target material, find the 

best precursors and conditions

Figure adapted from: A. Miura et al., Advanced Materials (2021).

A|B B|C A2B|BC2

A + 2B + 3C → AB2C3
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Combining predictions with experiments to optimize synthesis

Given a target material, find the 

best precursors and conditions

Figure adapted from: A. Miura et al., Advanced Materials (2021).

Each interface is 

described by a 

binary convex hull

A|B B|C A2B|BC2

A + 2B + 3C → AB2C3
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Computed thermodynamics (∆𝑮) guide the optimization

An ideal reaction pathway 

has large ∆𝑮 at the 

target-forming step 

∆𝑮
DFT energetics

Target



An ideal reaction pathway 

has large ∆𝑮 at the 

target-forming step 

∆𝑮
DFT energetics

21/42

Computed thermodynamics (∆𝑮) guide the optimization

But how do we know what these pathways will be?

Target
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ARROWS learns the reaction pathways

Predict reaction 
outcomes of new 

precursor sets

Prioritize precursor sets 
with large ∆𝑮

Perform experiments 
using suggested 

precursors

DFT-calculated 

energetics

Precursors

Target
∆𝑮
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ARROWS learns the reaction pathways

Predict reaction 
outcomes of new 

precursor sets

Prioritize precursor sets 
with large ∆𝑮

Perform experiments 
using suggested 

precursors

DFT-calculated 

energetics

Intermediates

Target
∆𝑮

Learn what pairwise 

reactions occurred 

and re-compute ∆𝑮
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ARROWS learns the reaction pathways

Predict reaction 
outcomes of new 

precursor sets

Prioritize precursor sets 
with large ∆𝑮

Perform experiments 
using suggested 

precursors

DFT-calculated 

energetics

Intermediates

Target
∆𝑮
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ARROWS learns the reaction pathways

Predict reaction 
outcomes of new 

precursor sets

Prioritize precursor sets 
that retain large ∆𝑮

Perform experiments 
using suggested 

precursors

Intermediates

Target
∆𝑮

Avoid pairs that 

form highly stable 

intermediates

Update 

ranking
Iterate to success!
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Finding improved synthesis routes for a high-Tc superconductor

YBa2Cu3O7-x

(YBCO)
Traditional synthesis of YBCO:

Common impurities: BaCuO2 and Y2BaCuO5

4 BaCO3 + Y2O3 + 6 CuO @ 950 °C for > 12 h

With intermittent regrinding and reheating

Objective:

Find synthesis routes that yield 

~pure YBCO in 4 h at ≤ 900 °C

N. J. Szymanski et al., Nature Communications (2024).
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Traditional precursors lead to many impurities after 4 h

47.8% BaCO3

9.7% BaCuO2

27.1% CuO

6.5% Y2BaCuO5

8.9% YBCO Low target yield

Y2O3 + 4 BaCO3 + 6 CuO (900 °C)
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Traditional precursors lead to many impurities after 4 h

47.8% BaCO3

9.7% BaCuO2

27.1% CuO

6.5% Y2BaCuO5

8.9% YBCO

BaCO3 is slow to 

react before its 

decomposition 

(> 1000 °C)

Y2O3 + 4 BaCO3 + 6 CuO (900 °C)
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Traditional precursors lead to many impurities after 4 h

Y2O3 + 4 BaCO3 + 6 CuO (900 °C)

47.8% BaCO3

9.7% BaCuO2

27.1% CuO

6.5% Y2BaCuO5

8.9% YBCO

When BaCO3

reacts, it forms 

BaCuO2 and 

subsequently 

Y2BaCuO5

These are 

impurities we’d 

like to avoid
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ARROWS succeeds in identifying fast synthesis routes

All optima

       

Bayesian

GeneticS
u

cc
e
ss

fu
l 
sy

n
th

e
se

s

Experimental iterations

All optima

       

Bayesian

Genetic

In 87 iterations, ARROWS 

found 10 synthesis routes 

that produce YBCO with

high yield in ≤ 4 h



Y2O3 + 4 BaCO3 + 6 CuO (900 °C)

26/42

The optimized precursors lead to much higher purity

Y2O3 + 2 Ba2Cu3O6 (900 °C)

Substantially 

improved YBCO 

purity

Ba2Cu3O6 and Y2O3 react directly to form YBCO at 𝑻 ≤ 𝟗𝟎𝟎 °C
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ARROWS succeeds in identifying fast synthesis routes

All optima

       

Bayesian

GeneticS
u

cc
e
ss

fu
l 
sy

n
th

e
se

s

Experimental iterations

All optima

       

Bayesian

Genetic

In 87 iterations, ARROWS 

found 10 synthesis routes 

that produce YBCO with

> 95% yield in ≤ 4 h

Is ARROWS efficient?
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ARROWS outperforms black-box optimization

All optima

       

Bayesian

GeneticS
u

cc
e
ss

fu
l 
sy

n
th

e
se

s

Experimental iterations

In 87 iterations, ARROWS 

found 10 synthesis routes 

that produce YBCO with

> 95% yield in ≤ 4 h

For comparison:

Bayesian optimization and 

genetic algorithms required

> 160 iterations
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Computational tools for synthesis and characterization

AI for characterization

With automated decision making, 

analysis of characterization data 

becomes the bottleneck

Powder X-ray diffraction (XRD)

→ what phases are present
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Simulating XRD is easy, but solving XRD is hard

How to go from XRD to structure?

𝐹ℎ𝑘𝑙 =

𝑗=1

𝑁

𝑓𝑗e
−2𝜋𝑖(ℎ𝑥𝑗+𝑘𝑦𝑗+𝑙𝑧𝑗)

• Experimental artifacts modify peaks

• Multi-phase mixtures are common

• The pattern may not be unique
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Simulating XRD is easy, but solving XRD is hard

Train ML to solve reverse problem!

𝐹ℎ𝑘𝑙 =

𝑗=1

𝑁

𝑓𝑗e
−2𝜋𝑖(ℎ𝑥𝑗+𝑘𝑦𝑗+𝑙𝑧𝑗)

These can be simulated and 

used to train ML models

• Experimental artifacts modify peaks

• Multi-phase mixtures are common

• The pattern may not be unique ML can be probabilistic



30/42

Neural networks are trained on simulated XRD patterns

Known structures Simulated patterns Convolutional neural networks

Shifts

in 2θ
Broad 

peaks

Intensity 

changes

Data augmentation

from strain, texture, and 

poor crystallinity

Materials Project

N. J. Szymanski et al., Chemistry of Materials (2021).
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ML outperforms traditional methods, but limitations persist

Accuracy relative to traditional methods (JADE)

N
e
u

ra
l 
n

e
tw

o
rk

s

Tr
a
d

it
io

n
a
l

Mixtures are difficult 

to characterize reliably

Simulated test data:

4k patterns augmented 

with exp artifacts

Experimental test data:

80 patterns augmented 

with exp artifacts

(Li-Mn-Ti-O-F)
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ML outperforms traditional methods, but limitations persist

N
e
u

ra
l 
n

e
tw

o
rk

s

Tr
a
d

it
io

n
a
l

Impurity phases 

with low weight 

fractions are 

challenging to 

detect

Accuracy relative to traditional methods (JADE)
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Can we adaptively control XRD to focus on impurities?

Steer diffractometer 

toward region of 

interest

What impurity 

phases are present?

These features need 

to be clarified
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Adaptive XRD workflow: initial scan is fast and noisy

N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive XRD workflow: CNN predicts likely phases

N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive XRD workflow: CAMs highlight areas of interest

N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive XRD workflow: CAMs highlight areas of interest

Model predicts dog

Model predicts cat

Example from Keras tutorials
N. J. Szymanski et al., npj Computational Materials (2023).

Class 

activation 

map (CAM)
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Adaptive XRD workflow: slower rescans clarify key features

N. J. Szymanski et al., npj Computational Materials (2023).
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Adaptive scans more effectively detect secondary phases

However, impurity detection remains 

challenging when there are more 

phases to choose from

• XRD performed on 120 mixtures in 

the Li-La-Zr-O space, prepared with 

varied impurity amounts

• Adaptive scans show improved 

accuracy in impurity detection

Tests on 

simulated data

N. J. Szymanski et al., npj Computational Materials (2023).
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Computational tools for synthesis and characterization

AI for characterizationDFT for synthesis planning
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Computational tools for synthesis and characterization

AI for characterization

Integrate these two approaches

for closed-loop experimental optimizationSelf-driving 

labs

DFT for synthesis planning
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Self-driving labs are being developed around the globe

Automated thin film growth

MacLeod et al., Science Advances (2020).

Automated solution-based synthesis

Burger et al., Nature (2020).
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Automated solid-state synthesis for inorganic materials

> 3500 samples

Y. Fei et al., Digital Discovery (2024).N. J. Szymanski et al., Nature (2023).

Sample prep Heating Extraction XRD
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Challenge #1: most experimental iterations fail

130/355 

recipes

37% success 

per recipe

Computed phase 

diagrams only 

get us so far

N. J. Szymanski et al., Nature (2023).
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Challenge #2: materials characterization remains difficult

130/355 

recipes

Conventional

(ex-situ) XRD

MgTi4(PO4)6

Successful syntheses often 

still contain impurities, which 

the AI struggles to identify

*
*

*

*
*

Leeman et al., PRX Energy (2024).
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Challenge #2: materials characterization remains difficult

130/355 

recipes

Adaptive XRD can help with impurity 

detection, but its accuracy still decreases 

in many-component chemistries

Ex-situ XRD only gets us so far

Tests on 

simulated data

Conventional

(ex-situ) XRD

MgTi4(PO4)6
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Future: additional characterization, with a focus on in-situ

High-throughput in-situ XRD ML for complementary techniques

Open-source
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Challenge #1: most experimental iterations fail

130/355 

recipes

37% success 

per recipe

Computed phase 

diagrams only 

get us so far

How to overcome the low success 

rate of thermodynamic-based 

synthesis design?
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Future: directly simulate the kinetics of solid-state reactions

Accuracy Timescale

System complexity
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Future: directly simulate the kinetics of solid-state reactions

Leverage machine learning 

to bridge this gap in the 

simulation of kinetics

Accuracy Timescale

System complexity
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